{"title":"Pan-cancer assessment of antineoplastic therapy-induced interstitial lung disease in patients receiving subsequent therapy immediately following immune checkpoint blockade therapy","authors":"Yoshihiro Kitahara, Yusuke Inoue, Hideki Yasui, Masato Karayama, Yuzo Suzuki, Hironao Hozumi, Kazuki Furuhashi, Noriyuki Enomoto, Tomoyuki Fujisawa, Kazuhito Funai, Tetsuya Honda, Kiyoshi Misawa, Hideaki Miyake, Hiroya Takeuchi, Naoki Inui, Takafumi Suda","doi":"10.1186/s12931-024-02683-8","DOIUrl":"https://doi.org/10.1186/s12931-024-02683-8","url":null,"abstract":"Drug-induced interstitial lung disease (DIILD) is a serious adverse event potentially induced by any antineoplastic agent. Whether cancer patients are predisposed to a higher risk of DIILD after receiving immune checkpoint inhibitors (ICIs) is unknown. This study retrospectively assessed the cumulative incidence of DIILD in consecutive cancer patients who received post-ICI antineoplastic treatment within 6 months from the final dose of ICIs. There was also a separate control cohort of 55 ICI-naïve patients with non-small cell lung cancer (NSCLC) who received docetaxel. Of 552 patients who received ICIs, 186 met the inclusion criteria. The cohort predominantly comprised patients with cancer of the lung, kidney/urinary tract, or gastrointestinal tract. The cumulative incidence of DIILD in the entire cohort at 3 and 6 months was 4.9% (95% confidence interval [CI] 2.4%–8.7%) and 7.2% (95% CI 4.0%–11.5%), respectively. There were significant differences according to cancer type (Gray’s test, P = .04), with the highest cumulative incidence of DIILD in patients with lung cancer being 9.8% (95% CI 4.3%–18.0%) at 3 months and 14.2% (95% CI 7.3%–23.3%) at 6 months. DIILD was caused by docetaxel in six of these 11 lung cancer patients (54.5%). After matching, the cumulative incidence of docetaxel-induced ILD in patients with NSCLC in the post-ICI setting was higher than that in the ICI-naïve setting: 13.0% (95% CI 3.3%–29.7%) vs 4.3% (95% CI 0.3%–18.2%) at 3 months; and 21.7% (95% CI 7.9%–39.9%) vs 4.3% (95% CI 0.3%–18.2%) at 6 months. However, these were not significant differences (hazard ratio, 5.37; 95% CI 0.64–45.33; Fine–Gray P = .12). Patients with lung cancer were at high risk of developing DIILD in subsequent regimens after ICI treatment. Whether NSCLC patients are predisposed to additional risk of docetaxel-induced ILD by prior ICIs warrants further study.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"52 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139408906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qixin Wang, Joseph H Lucas, Cortney Pang, Ruogang Zhao, Irfan Rahman
{"title":"Tobacco and menthol flavored nicotine-free electronic cigarettes induced inflammation and dysregulated repair in lung fibroblast and epithelium","authors":"Qixin Wang, Joseph H Lucas, Cortney Pang, Ruogang Zhao, Irfan Rahman","doi":"10.1186/s12931-023-02537-9","DOIUrl":"https://doi.org/10.1186/s12931-023-02537-9","url":null,"abstract":"Electronic cigarette (e-cig) vaping has increased in the past decade in the US, and e-cig use is misleadingly marketed as a safe cessation for quitting smoking. The main constituents in e-liquid are humectants, such as propylene glycol (PG) and vegetable glycerine (VG), but different flavoring chemicals are also used. However, the toxicology profile of flavored e-cigs in the pulmonary tract is lacking. We hypothesized that menthol and tobacco-flavored e-cig (nicotine-free) exposure results in inflammatory responses and dysregulated repair in lung fibroblast and epithelium. We exposed lung fibroblast (HFL-1) and epithelium (BEAS-2B) to Air, PG/VG, menthol flavored, or tobacco-flavored e-cig, and determined the cytotoxicity, inflammation, and wound healing ability in 2D cells and 3D microtissue chip models. After exposure, HFL-1 showed decreased cell number with increased IL-8 levels in the tobacco flavor group compared to air. BEAS-2B also showed increased IL-8 secretion after PG/VG and tobacco flavor exposure, while menthol flavor exposure showed no change. Both menthol and tobacco-flavored e-cig exposure showed decreased protein abundance of type 1 collagen α 1 (COL1A1), α-smooth-muscle actin (αSMA), and fibronectin as well as decreased gene expression level of αSMA (Acta2) in HFL-1. After tobacco flavor e-cig exposure, HFL-1 mediated wound healing and tissue contractility were inhibited. Furthermore, BEAS-2B exposed to menthol flavor showed significantly decreased tight junction gene expressions, such as CDH1, OCLN, and TJP1. Overall, tobacco-flavored e-cig exposure induces inflammation in both epithelium and fibroblasts, and tobacco-flavored e-cig inhibits wound healing ability in fibroblasts.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"13 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139408907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial intelligence-based analysis of the spatial distribution of abnormal computed tomography patterns in SARS-CoV-2 pneumonia: association with disease severity","authors":"Yusuke Kataoka, Naoya Tanabe, Masahiro Shirata, Nobuyoshi Hamao, Issei Oi, Tomoki Maetani, Yusuke Shiraishi, Kentaro Hashimoto, Masatoshi Yamazoe, Hiroshi Shima, Hitomi Ajimizu, Tsuyoshi Oguma, Masahito Emura, Kazuo Endo, Yoshinori Hasegawa, Tadashi Mio, Tetsuhiro Shiota, Hiroaki Yasui, Hitoshi Nakaji, Michiko Tsuchiya, Keisuke Tomii, Toyohiro Hirai, Isao Ito","doi":"10.1186/s12931-024-02673-w","DOIUrl":"https://doi.org/10.1186/s12931-024-02673-w","url":null,"abstract":"The substantial heterogeneity of clinical presentations in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia still requires robust chest computed tomography analysis to identify high-risk patients. While extension of ground-glass opacity and consolidation from peripheral to central lung fields on chest computed tomography (CT) might be associated with severely ill conditions, quantification of the central-peripheral distribution of ground glass opacity and consolidation in assessments of SARS-CoV-2 pneumonia remains unestablished. This study aimed to examine whether the central-peripheral distributions of ground glass opacity and consolidation were associated with severe outcomes in patients with SARS-CoV-2 pneumonia independent of the whole-lung extents of these abnormal shadows. This multicenter retrospective cohort included hospitalized patients with SARS-CoV-2 pneumonia between January 2020 and August 2021. An artificial intelligence-based image analysis technology was used to segment abnormal shadows, including ground glass opacity and consolidation. The area ratio of ground glass opacity and consolidation to the whole lung (GGO%, CON%) and the ratio of ground glass opacity and consolidation areas in the central lungs to those in the peripheral lungs (GGO(C/P)) and (CON(C/P)) were automatically calculated. Severe outcome was defined as in-hospital death or requirement for endotracheal intubation. Of 512 enrolled patients, the severe outcome was observed in 77 patients. GGO% and CON% were higher in patients with severe outcomes than in those without. Multivariable logistic models showed that GGO(C/P), but not CON(C/P), was associated with the severe outcome independent of age, sex, comorbidities, GGO%, and CON%. In addition to GGO% and CON% in the whole lung, the higher the ratio of ground glass opacity in the central regions to that in the peripheral regions was, the more severe the outcomes in patients with SARS-CoV-2 pneumonia were. The proposed method might be useful to reproducibly quantify the extension of ground glass opacity from peripheral to central lungs and to estimate prognosis.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"21 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina Blumer, Petra Khan, Nataliia Artysh, Linda Plappert, Spasenija Savic, Lars Knudsen, Danny Jonigk, Mark P. Kuehnel, Antje Prasse, Katrin E. Hostettler
{"title":"The use of cultured human alveolar basal cells to mimic honeycomb formation in idiopathic pulmonary fibrosis","authors":"Sabrina Blumer, Petra Khan, Nataliia Artysh, Linda Plappert, Spasenija Savic, Lars Knudsen, Danny Jonigk, Mark P. Kuehnel, Antje Prasse, Katrin E. Hostettler","doi":"10.1186/s12931-024-02666-9","DOIUrl":"https://doi.org/10.1186/s12931-024-02666-9","url":null,"abstract":"Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann–Whitney tests were performed using GraphPad Prism software. Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"58 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139408597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying vital sign trajectories to predict 28-day mortality of critically ill elderly patients with acute respiratory distress syndrome","authors":"Mingzhuo Li, Fen Liu, Yang Yang, Jiahui Lao, Chaonan Yin, Yafei Wu, Zhongshang Yuan, Yongyue Wei, Fang Tang","doi":"10.1186/s12931-023-02643-8","DOIUrl":"https://doi.org/10.1186/s12931-023-02643-8","url":null,"abstract":"The mortality rate of acute respiratory distress syndrome (ARDS) increases with age (≥ 65 years old) in critically ill patients, and it is necessary to prevent mortality in elderly patients with ARDS in the intensive care unit (ICU). Among the potential risk factors, dynamic subphenotypes of respiratory rate (RR), heart rate (HR), and respiratory rate-oxygenation (ROX) and their associations with 28-day mortality have not been clearly explored. Based on the eICU Collaborative Research Database (eICU-CRD), this study used a group-based trajectory model to identify longitudinal subphenotypes of RR, HR, and ROX during the first 72 h of ICU stays. A logistic model was used to evaluate the associations of trajectories with 28-day mortality considering the group with the lowest rate of mortality as a reference. Restricted cubic spline was used to quantify linear and nonlinear effects of static RR-related factors during the first 72 h of ICU stays on 28-day mortality. Receiver operating characteristic (ROC) curves were used to assess the prediction models with the Delong test. A total of 938 critically ill elderly patients with ARDS were involved with five and 5 trajectories of RR and HR, respectively. A total of 204 patients fit 4 ROX trajectories. In the subphenotypes of RR, when compared with group 4, the odds ratios (ORs) and 95% confidence intervals (CIs) of group 3 were 2.74 (1.48–5.07) (P = 0.001). Regarding the HR subphenotypes, in comparison to group 1, the ORs and 95% CIs were 2.20 (1.19–4.08) (P = 0.012) for group 2, 2.70 (1.40–5.23) (P = 0.003) for group 3, 2.16 (1.04–4.49) (P = 0.040) for group 5. Low last ROX had a higher mortality risk (P linear = 0.023, P nonlinear = 0.010). Trajectories of RR and HR improved the predictive ability for 28-day mortality (AUC increased by 2.5%, P = 0.020). For RR and HR, longitudinal subphenotypes are risk factors for 28-day mortality and have additional predictive enrichment, whereas the last ROX during the first 72 h of ICU stays is associated with 28-day mortality. These findings indicate that maintaining the health dynamic subphenotypes of RR and HR in the ICU and elevating static ROX after initial critical care may have potentially beneficial effects on prognosis in critically ill elderly patients with ARDS.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"98 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fine particulate matter contributes to COPD-like pathophysiology: experimental evidence from rats exposed to diesel exhaust particles","authors":"Zhang-fu Fang, Zhao-ni Wang, Zhe Chen, Yang Peng, Yu Fu, Yang Yang, Hai-long Han, Yan-bo Teng, Wei Zhou, Damo Xu, Xiao-yu Liu, Jia-xing Xie, Junfeng (Jim) Zhang, Nan-shan Zhong","doi":"10.1186/s12931-023-02623-y","DOIUrl":"https://doi.org/10.1186/s12931-023-02623-y","url":null,"abstract":" Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"7 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risk factors for prolonged mechanical ventilation in critically ill patients with influenza-related acute respiratory distress syndrome","authors":"Pai-Chi Hsu, Yi-Tsung Lin, Kuo-Chin Kao, Chung-Kan Peng, Chau-Chyun Sheu, Shinn-Jye Liang, Ming-Cheng Chan, Hao-Chien Wang, Yu-Mu Chen, Wei-Chih Chen, Kuang-Yao Yang","doi":"10.1186/s12931-023-02648-3","DOIUrl":"https://doi.org/10.1186/s12931-023-02648-3","url":null,"abstract":"Patients with influenza-related acute respiratory distress syndrome (ARDS) are critically ill and require mechanical ventilation (MV) support. Prolonged mechanical ventilation (PMV) is often seen in these cases and the optimal management strategy is not established. This study aimed to investigate risk factors for PMV and factors related to weaning failure in these patients. This retrospective cohort study was conducted by eight medical centers in Taiwan. All patients in the intensive care unit with virology-proven influenza-related ARDS requiring invasive MV from January 1 to March 31, 2016, were included. Demographic data, critical illness data and clinical outcomes were collected and analyzed. PMV is defined as mechanical ventilation use for more than 21 days. There were 263 patients with influenza-related ARDS requiring invasive MV enrolled during the study period. Seventy-eight patients had PMV. The final weaning rate was 68.8% during 60 days of observation. The mortality rate in PMV group was 39.7%. Risk factors for PMV were body mass index (BMI) > 25 (kg/m2) [odds ratio (OR) 2.087; 95% confidence interval (CI) 1.006–4.329], extracorporeal membrane oxygenation (ECMO) use (OR 6.181; 95% CI 2.338–16.336), combined bacterial pneumonia (OR 4.115; 95% CI 2.002–8.456) and neuromuscular blockade use over 48 h (OR 2.8; 95% CI 1.334–5.879). In addition, risk factors for weaning failure in PMV patients were ECMO (OR 5.05; 95% CI 1.75–14.58) use and bacteremia (OR 3.91; 95% CI 1.20–12.69). Patients with influenza-related ARDS and PMV have a high mortality rate. Risk factors for PMV include BMI > 25, ECMO use, combined bacterial pneumonia and neuromuscular blockade use over 48 h. In addition, ECMO use and bacteremia predict unsuccessful weaning in PMV patients.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"29 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Veneroni, Raffaele L. Dellacà, Erik Küng, Beatrice Bonomi, Angelika Berger, Tobias Werther
{"title":"Oscillometry for personalizing continuous distending pressure maneuvers: an observational study in extremely preterm infants","authors":"Chiara Veneroni, Raffaele L. Dellacà, Erik Küng, Beatrice Bonomi, Angelika Berger, Tobias Werther","doi":"10.1186/s12931-023-02639-4","DOIUrl":"https://doi.org/10.1186/s12931-023-02639-4","url":null,"abstract":"Lung recruitment and continuous distending pressure (CDP) titration are critical for assuring the efficacy of high-frequency ventilation (HFOV) in preterm infants. The limitation of oxygenation (peripheral oxygen saturation, SpO2) in optimizing CDP calls for evaluating other non-invasive bedside measurements. Respiratory reactance (Xrs) at 10 Hz measured by oscillometry reflects lung volume recruitment and tissue strain. In particular, lung volume recruitment and decreased tissue strain result in increased Xrs values. In extremely preterm infants treated with HFOV as first intention, we aimed to measure the relationship between CDP and Xrs during SpO2-driven CDP optimization. In this prospective observational study, extremely preterm infants born before 28 weeks of gestation undergoing SpO2-guided lung recruitment maneuvers were included in the study. SpO2 and Xrs were recorded at each CDP step. The optimal CDP identified by oxygenation (CDPOpt_SpO2) was compared to the CDP providing maximal Xrs on the deflation limb of the recruitment maneuver (CDPXrs). We studied 40 infants (gestational age at birth = 22+ 6-27+ 5 wk; postnatal age = 1–23 days). Measurements were well tolerated and provided reliable results in 96% of cases. On average, Xrs decreased during the inflation limb and increased during the deflation limb. Xrs changes were heterogeneous among the infants for the amount of decrease with increasing CDP, the decrease at the lowest CDP of the deflation limb, and the hysteresis of the Xrs vs. CDP curve. In all but five infants, the hysteresis of the Xrs vs. CDP curve suggested effective lung recruitment. CDPOpt_SpO2 and CDPXrs were highly correlated (ρ = 0.71, p < 0.001) and not statistically different (median difference [range] = -1 [-3; 9] cmH2O). However, CDPXrs were equal to CDPOpt_SpO2 in only 6 infants, greater than CDPOpt_SpO2 in 10, and lower in 24 infants. The Xrs changes described provide complementary information to oxygenation. Further investigation is warranted to refine recruitment maneuvers and CPD settings in preterm infants.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"22 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charline Sommer, Stella Marie Reamon-Buettner, Monika Niehof, Christina Beatrix Hildebrand, Armin Braun, Katherina Sewald, Susann Dehmel, Christina Brandenberger
{"title":"Age-dependent inflammatory response is altered in an ex vivo model of bacterial pneumonia","authors":"Charline Sommer, Stella Marie Reamon-Buettner, Monika Niehof, Christina Beatrix Hildebrand, Armin Braun, Katherina Sewald, Susann Dehmel, Christina Brandenberger","doi":"10.1186/s12931-023-02609-w","DOIUrl":"https://doi.org/10.1186/s12931-023-02609-w","url":null,"abstract":"Aging is associated with an increased incidence and mortality of Pseudomonas aeruginosa-induced pneumonias. This might be partly due to age-dependent increases in inflammatory mediators, referred to as inflamm-aging and a decline in immune functions, known as immunosenescence. Still, the impact of dysregulated immune responses on lung infection during aging is poorly understood. Here, we aimed to mimic inflamm-aging using ex vivo precision-cut lung slices (PCLS) and neutrophils – as important effector cells of innate immunity – from young and old mice and investigated the influence of aging on inflammation upon infection with P. aeruginosa bacteria. Murine PCLS were infected with the P. aeruginosa standard lab strain PAO1 and a clinical P. aeruginosa isolate D61. After infection, whole-transcriptome analysis of the tissue as well as cytokine expression in supernatants and tissue lysates were performed. Responses of isolated neutrophils towards the bacteria were investigated by quantifying neutrophil extracellular trap (NET) formation, cytokine secretion, and analyzing expression of surface activation markers using flow cytometry. Inflamm-aging was observed by transcriptome analysis, showing an enrichment of biological processes related to inflammation, innate immune response, and chemotaxis in uninfected PCLS of old compared with young mice. Upon P. aeruginosa infection, the age-dependent pro-inflammatory response was even further promoted as shown by increased production of cytokines and chemokines such as IL-1β, IL-6, CXCL1, TNF-α, and IL-17A. In neutrophil cultures, aging did not influence NET formation or cytokine secretion during P. aeruginosa infection. However, expression of receptors associated with inflammatory responses such as complement, adhesion, phagocytosis, and degranulation was lower in neutrophils stimulated with bacteria from old mice as compared to young animals. By using PCLS and neutrophils from young and old mice as immunocompetent ex vivo test systems, we could mimic dysregulated immune responses upon aging on levels of gene expression, cytokine production, and receptor expression. The results furthermore reflect the exacerbation of inflammation upon P. aeruginosa lung infection as a result of inflamm-aging in old age.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"30 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}