J. D. Trumbull, E. Maslana, D. Mckenna, Thomas A. Nemcek, W. Niforatos, Jeffrey Y. Pan, A. Parihar, C. Shieh, Julie A. Wilkins, C. Briggs, D. Bertrand
{"title":"High Throughput Electrophysiology Using a Fully Automated, Multiplexed Recording System","authors":"J. D. Trumbull, E. Maslana, D. Mckenna, Thomas A. Nemcek, W. Niforatos, Jeffrey Y. Pan, A. Parihar, C. Shieh, Julie A. Wilkins, C. Briggs, D. Bertrand","doi":"10.1080/10606820308252","DOIUrl":"https://doi.org/10.1080/10606820308252","url":null,"abstract":"The drug discovery process centers around finding and optimizing novel compounds active at therapeutic targets. This process involves direct and indirect measures of how compounds affect the behavior of the target in question. The sheer number of compounds that must be tested poses problems for classes of ion channel targets for which direct functional measurements (e.g., traditional patch-clamping) are too cumbersome and indirect measurements (e.g., Ca(2+)-sensitive dyes) lack sufficient sensitivity or require unacceptable compromises. We present an optimized process for obtaining large numbers of direct electrophysiological measurements (two-electrode voltage-clamp) from Xenopus oocytes using a combination of automated oocyte handling, efficient and flexible liquid delivery, parallel operation, and powerful integrated data analysis. These improvements have had a marked impact, increasing the contribution electrophysiology makes in optimizing lead compound series and the discovery of new ones. The design of the system is detailed along with examples of data generated in support of lead optimization and discovery.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"11 1","pages":"19-28"},"PeriodicalIF":0.0,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82227883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Schnizler, Mike Küster, C. Methfessel, M. Fejtl
{"title":"The roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates.","authors":"K. Schnizler, Mike Küster, C. Methfessel, M. Fejtl","doi":"10.3109/10606820308253","DOIUrl":"https://doi.org/10.3109/10606820308253","url":null,"abstract":"Membrane-bound neurotransmitter receptors and ion channels are among the most numerous and important drug targets, and electrophysiological methods are the gold standard for the study of their functional properties and their response to drugs. However, electrophysiological measurements are usually performed one at a time by highly skilled individuals, and secondary functional screening is often hampered by this lack of throughput. Accordingly, the use of automated procedures to increase the efficiency of electrophysiological techniques is of great interest. Among the many different electrophysiological techniques that have been described, two electrode voltage clamp recording (TEVC) from Xenopus oocytes seems particularly suitable for the implementation of automated measurement systems. Here, we describe a workstation that was expressly developed for this purpose. The Roboocyte is the first (and the only currently available) instrument that automatically performs both cDNA (or mRNA) injection and subsequent TEVC recording on Xenopus oocytes plated in a standard 96-well microtiter plate. This paper describes the scientific background of the oocyte expression system for drug screening and the development of the Roboocyte. Then, some technical details of the Roboocyte system are presented and, finally, results obtained with the Roboocyte are discussed with regard to increased throughput compared with manually performed experiments. Further information can be obtained at www.roboocyte.com.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"13 1","pages":"41-8"},"PeriodicalIF":0.0,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78704631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of the Cytosensor microphysiometer to drug discovery.","authors":"K. Wille, L. A. Paige, A. J. Higgins","doi":"10.3109/10606820308246","DOIUrl":"https://doi.org/10.3109/10606820308246","url":null,"abstract":"The Cytosensor microphysiometer uses silicon chip technology to correlate changes in extracellular acidification rates with quantitative changes in cellular metabolism in response to ligand binding to surface receptors. This functional measure of physiology makes the Cytosensor a valuable tool in drug discovery research by allowing application of the instrument to screening of prospective pharmacologically active agents, characterizations of dose responses and structure-activity relationships, and investigation of mechanisms of action.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"41 1","pages":"125-31"},"PeriodicalIF":0.0,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73845382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"V2R structure and diabetes insipidus.","authors":"Mariel Birnbaumer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>For most audiences, the term \"diabetes\" conjures thoughts of high levels of blood glucose and of the symptoms that characterize diabetes mellitus. In the last few years, a spirited campaign spear-headed by the families of affected individuals has made progress in educating nonprofessional and medical communities about diabetes insipidus (DI), the other disease characterized by polyuria (i.e., diabetes). Much work lies ahead to find better treatments for this affliction, but the progress in molecular biology over the last years made possible the identification of the genetic defects underlying the inherited forms of the disease. Numerous cases of adult-onset DI are triggered by toxic damage to the kidneys that impairs the concentrating capacity of the nephrons by a nonspecific mechanism. In these pages I shall deal mostly with the inherited forms of the disease. Diabetes insipidus is characterized by the inability of the kidneys of affected individuals to produce concentrated urine (Morello and Bichet 2001). The elimination of large volumes of diluted urine (polyuria) and excessive thirst (polydipsia) are the chief symptoms of the disease. Although this condition and the hints that it was a hereditary disease were described at the end of the 19th century, it took almost 100 years to gain molecular knowledge about its etiology. A brief review of the important role played by vasopressin in the maintenance of body fluids will help the reader understand the severity of this disease.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 1","pages":"51-6"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22085600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of receptor G-protein fusion proteins for the study of ligand activity.","authors":"G. Milligan","doi":"10.3109/10606820214639","DOIUrl":"https://doi.org/10.3109/10606820214639","url":null,"abstract":"Fusion proteins in which the N-terminus of a G protein alpha subunit is attached in frame to the C-terminal tail of a G-protein-coupled receptor have become widely used as experimental systems to explore the quantitative details of ligand stimulation of specific receptor G-protein combinations. In part, this reflects that they function as agonist-activated GTPases that behave with simple Michaelan kinetics. They have also been used to explore the effects of mutation in both receptor and G protein on information transfer, ligand regulation of posttranslational acylation, and the mechanism and potential selectivity of regulators of G-protein signaling.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"12 1","pages":"309-17"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80972881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular pharmacology of the calcitonin receptor.","authors":"B. Purdue, N. Tilakaratne, P. Sexton","doi":"10.1080/10606820213681","DOIUrl":"https://doi.org/10.1080/10606820213681","url":null,"abstract":"The peptide hormone calcitonin is widely used therapeutically in the treatment of bone disorders such as Paget's disease, osteoporosis, and the hypercalcemia of some malignancies. However, emerging evidence suggests the actions of calcitonin via its G protein-coupled receptor, the calcitonin receptor, may not be limited to bone. Calcitonin receptors have also been identified in the central nervous system, testes, skeletal muscle, lymphocytes, and the placenta. We are now becoming aware that the complexity of the calcitonin response mediated by the calcitonin receptor can be influenced by accessory proteins, receptor isoforms, genetic polymorphisms, developmental and/or transcriptional regulation, feedback inhibition, and the specific cellular or tissue background. This article discusses what is known about the molecular and pharmacological actions of the calcitonin receptor and highlights areas of current research.","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"63 1","pages":"243-55"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88394245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular pharmacology of class II G protein-coupled receptors. Introduction.","authors":"Patrick M Sexton","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 3-4","pages":"135-6"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22196149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VPAC receptors for VIP and PACAP.","authors":"M Laburthe, A Couvineau, J C Marie","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>VIP and PACAP are two prominent neuropeptides that share two common G protein-coupled receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. This article reviews the present knowledge regarding various aspects of VPAC receptors including: 1) receptor specificity toward natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; 2) genomic organization and chromosomal localization; 3) signaling and established or putative interactions with G proteins or accessory proteins such as RAMPs or PDZ-containing proteins; 4) molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras, and structural modeling; 5) constitutively active receptor mutants; 6) short-term (desensitization, internalization, phosphorylation) and long-term (transcription) regulations and transgenic models; 7) receptor polymorphisms.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 3-4","pages":"137-53"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22197807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymorphic G-protein-coupled receptors and associated diseases.","authors":"Dianne M Perez","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Polymorphisms are quite common in the human population. Most likely every gene could be polymorphic. Most of these variations are common and have no functional consequence. However, as we learn more about the function of G-protein-coupled receptors (GPCRs) and how amino acid differences can modulate the function enough to measure, especially in a compromised physical state, the importance of characterizing these variations becomes substantial. This review will focus on polymorphisms in receptors that bind biogenic amines, calcium, opioids, endothelin, and those that also regulate taste, skin pigmentation, and oogenesis that have been suggested to cause variations of physiology.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 1","pages":"57-64"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22085601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marlene L Cohen, Elizabeth J Galbreath, Kathryn W Schenck, Danqing Li, Beth J Hoffman, Anindya Bhattacharya
{"title":"Lack of sumatriptan-induced aortic contraction or relaxation: 5-HT1B receptor protein detected in endothelium and smooth muscle of vasa vasorum but not aorta.","authors":"Marlene L Cohen, Elizabeth J Galbreath, Kathryn W Schenck, Danqing Li, Beth J Hoffman, Anindya Bhattacharya","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Since 5-HT1B receptor mRNA was reported in rat aorta, and 5-HT1B receptor activation has been linked to vascular contraction, we explored sumatriptan-induced contractility and immunohistochemical density of 5-HT1B receptor protein in rat aorta. Sumatriptan (up to 10(-4) M), a 5-HT1B/1D receptor agonist, did not contract the endothelial intact or denuded rat aorta, even in the presence of L-NAME or after induction of modest tone with PGF2 alpha (10(-6) M). Sumatriptan also did not relax aortic preparations precontract with PGF2 alpha (3 x 10(-6) M) or phenylephrine (3 x 10(-7) M). Using a polyclonal antibody directed against the 5-HT1B receptor, minimal 5-HT1B receptor protein was detected in either the endothelium or smooth muscle of the rat aorta. However, dense 5-HT1B receptor protein was found in the vascular smooth muscle of the vasa vasorum supplying the aorta. Thus, the 5-HT1B receptor mRNA detected in tissue extracts of the rat aorta most likely reflects 5-HT1B receptor expression in the arterioles of the vasa vasorum. These studies support the link between the 5-HT1B receptor and vascular contraction in that the aorta with low density of 5-HT1B receptors lacked responses to sumatriptan, an agonist thought to contract blood vessels via 5-HT1B/1D receptors. Furthermore, caution must be observed when using 5-HT1B receptor mRNA to suggest receptor protein in tissues since this RT-PCR product may be derived predominantly from small blood vessels.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"8 2","pages":"71-8"},"PeriodicalIF":0.0,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22126323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}