International Journal of Advanced Materials Manufacturing and Characterization最新文献

筛选
英文 中文
Review on Finite Element Analysis of Temperature Distribution in Heat Affected Zone by Different Welding Process 不同焊接工艺热影响区温度分布的有限元分析综述
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.052
Y. Puri, A. Patil, P. Durugkar
{"title":"Review on Finite Element Analysis of Temperature Distribution in Heat Affected Zone by Different Welding Process","authors":"Y. Puri, A. Patil, P. Durugkar","doi":"10.11127/IJAMMC.2013.02.052","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.052","url":null,"abstract":"This work has reviewed models and techniques for predicting the temperature distributions. The metal adjacent to a weld is exposed to severe thermal events. As a result, complex changes in metallurgical structure occur in heat affected zone region.When creating a numerical model, the aim is to implement the physical behaviour of the process into the model. However, it may be necessary to compromise between accuracy of the model and the required computational time. Different types of simplifications of the problem and more efficient computation methods are discussed","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128837421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Transport Properties and Scaling Spectra of Lithium Gallium Titanate Phosphate Glass Ceramics Materials 磷酸钛酸镓锂玻璃陶瓷材料的输运性质及标度光谱
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/ijammc.2013.02.056
R. Rao, C. Reddy
{"title":"Transport Properties and Scaling Spectra of Lithium Gallium Titanate Phosphate Glass Ceramics Materials","authors":"R. Rao, C. Reddy","doi":"10.11127/ijammc.2013.02.056","DOIUrl":"https://doi.org/10.11127/ijammc.2013.02.056","url":null,"abstract":"A B S T R A C T Lithium gallium phosphate glass samples were synthesized through melt quenching by varying lithium oxide, titanium oxide and gallium oxide concentrations. The de-polymarizability of glass ceramic samples was identified by Hurby’s parameter (Kgl) with the data of DTA traces. Impedance measurements were made on all the glass ceramic samples at different temperatures. The bulk resistance (R) for all the samples relative to each experimental temperature is deduced from the","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115723585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Filter Design using Bulk Driven Operational Transconductance Amplifier Topology 基于块驱动运算跨导放大器拓扑的有源滤波器设计
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.060
V. Sonti, C. Karthick
{"title":"Active Filter Design using Bulk Driven Operational Transconductance Amplifier Topology","authors":"V. Sonti, C. Karthick","doi":"10.11127/IJAMMC.2013.02.060","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.060","url":null,"abstract":"In this paper, an Active filter design using OTA has been done. Operational transconductance amplifier is taking input as a voltage and produces output as a current at the output terminal. Active filter design using operational transconductance amplifier such as Low pass filter (LPF), High pass filter (HPF), Band pass filter (BPF), Band rejection filter (BRF),(or) notch filter are implemented. The total number of components used in these circuits is small, and design equation and voltagecontrol characteristics are attractive. Active filter designs using the transconductance amplifier are discussed. It is shown that these structures offer improvements in design simplicity and compared to op amp based structures as well as reduced component count. Simulation results of the design have been obtained and cutoff frequencies for low pass filter at 1.5 kHz, where as high pass filter 20 kHz and Bandwidth 700 kHz. At Transconductance of 10nA/v. This work has been carried out using Pspice Simulation software and the results obtained are in accordance with theoretical facts. OTA is an amplifier whose differential input voltage produces an output current at the output terminal. it also called as voltage controlled current source . There is usually an additional input for a current to control the amplifier's trans conductance. The OTA is similar to a standard operational amplifier in that it has a high impedance differential input stage and that it may be used with negative feedback. Many of the basic OTA based structures use capacitors are attractive for integration Component count of these structures is often very low when compared to VCVS designs. Convenient internal or external voltage or current control of filter characteristics is attainable with these designs. They are attractive for frequency referenced applications. Several groups have recently utilized OTAs in continuous-time monolithic filter structures. [1]. From a practical viewpoint, the high-frequency performance of discrete bipolar OTAs, such as the CA3080, is quite good. The first commercially available integrated circuits units were produced by RCA (Radio Corporation of America) in 1969 in the form of the CA3080 and they have been improved since that time. Although most units are constructed with bipolar transistors, field effect transistor units are also produced. The OTA is not as useful by itself in the vast majority of standard op-amp functions as the ordinary op-amp because its output is current.OTA application such as variable frequency oscillator and filter and variable gain amplifier stages which are more difficult to implement with standard op-amps.its output of a current contrasts to that of standard operational amplifier whose output is voltage. It is usually used open-loop without negative feedback in linear application. This is possible because the magnitude of the resistance attached to its output controls its output voltage. Therefore a resistance can be chosen that keeps the ","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114763880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Centrifugal Pump for Palm Fruit Pulp Handling in Palm Oil Plant. 棕榈油厂棕榈果浆离心泵的设计。
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.058
V. Sreenivasulu, P. Rao, Anoop Kumar, B. Kumar
{"title":"Design of Centrifugal Pump for Palm Fruit Pulp Handling in Palm Oil Plant.","authors":"V. Sreenivasulu, P. Rao, Anoop Kumar, B. Kumar","doi":"10.11127/IJAMMC.2013.02.058","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.058","url":null,"abstract":"A B S T R A C T For the design of pump the system resistance (total head) is calculated by considering head and capacity correction factor for 5% consistency of pulp. This factor is taken from data book. Power required and specific speed calculated by standard formulae. For pulp pumps above 3% consistency semi open impeller is preferable. Impeller vane angles, number of vanes, vane curvatures are designed as per standards. Casing is considered as volute type. While designing of volute casing volute angle, throat area and tongue distance are designed as per standards. The shaft is designed as per power required by the pump. Designing of stuffing box and flexible coupling are done based on the shaft diameter by standard proportions. The thrust load and radial loads on the bearings are calculated and deep groove ball bearings are selected for withstanding that loads. The results obtained are compared with the operating parameters of the existing pump in our Palm oil plant and observed that the design is matching with the exist one.","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127306058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Severe Plastic Deformation 严重塑性变形研究进展
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.053
B. Srinivas, Chadaram Srinivasu, B. Mahesh, Aqheel
{"title":"A Review on Severe Plastic Deformation","authors":"B. Srinivas, Chadaram Srinivasu, B. Mahesh, Aqheel","doi":"10.11127/IJAMMC.2013.02.053","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.053","url":null,"abstract":"In the recent years much attention has been paid to the development of ultra-fine grained and nanostructured materials due to their superior properties. Several severe plastic deformation (SPD) techniques have emerged in the recent years for producing ultra fine grained materials in bulk metals and alloys. Among the various SPD techniques proposed most of the methods are intended for processing bulk materials; very few methods like Equal-channel angular pressing (ECAP),High pressure torsion (HPT)technique ,constrained groove pressing (CGP) and repetitive corrugation and straightening (RCS) are capable of processing sheet materials. The requirement of stringent surface preparation the propensity of cracking due to de-lamination of accumulative roll bonded layersand formation of edge cracks limits the application of ARB processed sheets. Meanwhile in RCS process elongation of sheets causes strain inhomogeneity. The recently invented CGP process sans above mentioned problems is considered method for producing fine grained sheet materials for structural applications .A further defining feature of SPD techniques is that the preservation of shape is achieved due to special tool geometries which prevent the free flow of material and thereby produce a significant hydrostatic pressure. The presence of a high hydrostatic pressure, in combination with large shear strains, is essential for producing high densities of crystal lattice defects, particularly dislocations, which can result in a significant refining of the grains","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127260200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Why Multi shot should be conducted for Radiography Examination.. 为什么x线检查要多拍?
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.086
S. V. Ranganayakulu, R. Gowtham, M. Premkumar
{"title":"Why Multi shot should be conducted for Radiography Examination..","authors":"S. V. Ranganayakulu, R. Gowtham, M. Premkumar","doi":"10.11127/IJAMMC.2013.02.086","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.086","url":null,"abstract":"Ultrasonic pulse echo method is approved for planar defect in the weld joint against radiography examination. The most important point in this evaluation is planar defects are effectively traced in radiography. Due to its excellent weldability, carbon steel is suitable for submerged arc welding. Ultrasonic and Radiography inspection is conducted for weld joint. During radiography method, planar defect (Lack of fusion) is detected and as verification ultrasonic pulse-echo method is also conducted to grasp planar defect. Primarily a demerit in radiography is shown as plus point in ultrasonic method. Secondarily, Lack of fusion is very common type of defect in weld defects. Lack of fusion is not notice as weld defect, as they are characterized as planar defect. As a final point, lack of fusion is not noticed by radiography examination, and may probably determine by ultrasonic method. The merits of Ultrasonic evaluation over X-ray Radiography inspection are discussed in these studies. Radiographic Testing (RT) or industrial radiography is a nondestructive testing (NDT) method of inspecting materials for hidden flaws by using the ability of short wavelength electromagnetic radiation (high energy photons) to penetrate various materials. Principle of radiography is differential absorptionand X-ray radiography can be used as source for detection of defectSince the amount of radiation emerging from the opposite side of the material can be detected and measured, variations in this amount (or intensity) of radiation are used to determine thickness or composition of material. Penetrating radiations are those restricted to that part of the electromagnetic spectrum of wavelength less than about 10 nanometer. Radiography defects such as planar cracks are difficult to detect using radiography; hence Ultrasonic is the preferred method for detecting this type of discontinuity.Ultrasonic pulse-waves of short wave length with center frequencies [3] ranging from 0.1-15 MHz and occasionally up to 50 MHz are launched into materials to detect internal flaws or to characterize materials.Radiography and ultrasonic inspection are the two generally non-destructive methods used in these investigations Non-destructive inspection methods that can [1] detect embedded flaws that are located well below the surface of the test part. Neither method is limited to the detection of specific types of internal flaws. In order to evaluate the stability of a casting component, the shape of a defect inside it is discriminating for the evaluation and acceptance criteria which shall be adopted. Defect shape is usually classified in two types; in volumetric defects, which the ratio between height and width is next to unity, and [7] in planar defects, whose width is indeed, very small with respect to the height. Radiography capability allows the inspection of internal mechanisms and enhances the detection of cracks and planar defects by manipulating the part to achieve the proper orientation f","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129210213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avant-garde Nanotechnology applications in Automotive Industry 先进纳米技术在汽车工业中的应用
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.034
H. Kantamneni, Akhila Gollakota, S. Nimmagadda
{"title":"Avant-garde Nanotechnology applications in Automotive Industry","authors":"H. Kantamneni, Akhila Gollakota, S. Nimmagadda","doi":"10.11127/IJAMMC.2013.02.034","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.034","url":null,"abstract":"Need of mobility all across the world is increasing exponentially. Automobile industry has continuously played a crucial role in the progress of society. The demand of automobiles is increasing rapidly all over the world. The rising economies of various countries will further increase the demand of automobiles. In order to achieve safety, comfort, fuel efficiency while being environment friendly automobile companies are investing heavily in research and development. In this context, nanotechnology is likely to play an important role. Nanotechnology is opening new doors for innovative products and applications in automobile sector. This paper focuses on the advantages of using nano-sized materials in automobiles to increase their durability and efficiency. It briefly explains diverse venues of application of this new technology in the automotive sector.","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133822508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
State of Art on Tribomechanical andTribo chemical Wear of Human Dental Enamel 人牙釉质摩擦力学与摩擦化学磨损的研究现状
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.021
Dukhishyam Soren, Prateek Gupta, M. R. Sankar
{"title":"State of Art on Tribomechanical andTribo chemical Wear of Human Dental Enamel","authors":"Dukhishyam Soren, Prateek Gupta, M. R. Sankar","doi":"10.11127/IJAMMC.2013.02.021","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.021","url":null,"abstract":"The application of tribology in dentistry is one of the rapidly growing and expanding fields. Intensive research has been conducted to understand dental tribology for selection of artificial dental materials. In the current paper, an overview on tribomechanical and tribochemical wear, combined with a description of the different wear simulating equipment and devices which allows us to better understand the multifactorial nature of wear has been presented. Wear and tear of the dental enamel due to tribomechanical factors such as two-body abrasion and three-body abrasion has been emphasized. Dental erosion due to chemical effect and the effect of oral environments has also been considered. In addition to these, overview of wear modes and wear locations has also been covered. According to results obtained by the authors and from the literature, the main progress in the area of dental tribology on natural dental enamel is reviewed. Basically human teeth are mainly composed of enamel, dentine and pulp. Dental enamel is the hardest and most mineralized tissue in the human body. Enamel, consists of 92–96% of inorganic substances, 1–2% of organic materials, and 3–4% of water by weight. Human teeth act as a mechanical device during masticatory processes such as cutting, tearing, and grinding of food particles and food bolus. The tooth is the only mineralized organ that is located partially internal and partially external to the human body. From advanced materials science point of view, a tooth is a functionally graded composite material with mineralized matrix and organic reinforcements (Fig.1). It is composed of three basic structural parts, namely enamel, dentin and the dentin-enamel junction (DEJ). The anatomical crowns of teeth are covered by dental enamel. Enamel comprises a mineral phase and an organic matrix. Dental enamel has a unique microstructure consisting of aligned prisms or rods, which run approximately perpendicular from the DEJ towards the tooth surface. The interfacial area between rods is termed interred enamel which is protein-rich material. The DEJ can be considered as a biological interface between the external enamel and underlying dentin. It is a unique junction between highly mineralized tissues of different embryogenic origins, matrix composition and physical properties. Figure 1.Schematic sectional view of various parts of the teeth Tribology is the science of the mechanisms of wear, friction and lubrication of interacting surfaces which are in relative motion. Wear is defined as material removal whenever a surface is exposed to another surface or to chemically active substances, which can result in a progressive removal of material from surfaces through mechanical or chemical action. Wear of human Enamel","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117229852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KBE approach towards design automation of Francis turbine spiral casing 混流式水轮机螺旋机匣设计自动化的KBE方法
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.057
A. AnithaLakshmi
{"title":"KBE approach towards design automation of Francis turbine spiral casing","authors":"A. AnithaLakshmi","doi":"10.11127/IJAMMC.2013.02.057","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.057","url":null,"abstract":"","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115913710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of Taguchi Method for Optimization of Friction Stir Welding Process Parameters to Joining of Al Alloy 田口法在铝合金搅拌摩擦焊工艺参数优化中的应用
International Journal of Advanced Materials Manufacturing and Characterization Pub Date : 2013-03-13 DOI: 10.11127/IJAMMC.2013.02.046
S. Gupta, K. N. Pandey
{"title":"Application of Taguchi Method for Optimization of Friction Stir Welding Process Parameters to Joining of Al Alloy","authors":"S. Gupta, K. N. Pandey","doi":"10.11127/IJAMMC.2013.02.046","DOIUrl":"https://doi.org/10.11127/IJAMMC.2013.02.046","url":null,"abstract":"In this study, the joining of 6061-T4 Al alloy plates are carried out using friction stir welding (FSW) process and the process parameters are optimized using Taguchi method. The rotational speed, welding speed and axial force are the process parameters taken into consideration. The optimum process parameters are determined with reference to tensile strength of the joint. The results indicate that the rotational speed is highest significant parameter to deciding the tensile strength of the joint. The result shows that optimal values of process parameters are to get a maximum tensile strength of friction stir welded AA 6061 is 162 MPa. Friction stir welding (FSW) is a solid state joining process that invented at The Welding Institute (TWI) United Kingdom in 1991, is a viable technique for joining aluminium alloys that are difficult to fusion welding [1]. No defects are observed in FSW like porosity, alloy segregation and hot cracking, and welds are produced with good surface quality and thus no post weld cleaning is required [2]. There have been a lot of efforts to understand the effect of process parameters on material flow behavior, microstructure formation and mechanical properties of friction stir welded joints. The effect of some important process parameters on weld properties is major area for researchers [3-5]. In order to study the effect of FSW process parameters, most of follow the traditional experimental techniques, i.e. varying one parameter at a time while other parameters are constant, this conventional parametric design of experiment approach is time consuming. Taguchi statistical design is a powerful tool to identify significant factor from many factors by conducting relatively less number of experiments. Though research work applying Taguchi method on various processes have been reported in literatures [6-11], it appears that the optimization of FSW process parameters of 6061-T4 aluminium alloy using Taguchi method has not been reported yet. Considering the above facts, the Taguchi method is adopted to analyse the effect of each processing parameters (i.e. rotational speed, welding speed and axial force) for optimum tensile strength of friction stir welded joints of 6061-T4 aluminium alloy. Taguchi method Taguchi, a Japanese quality engineer widely recognized as the father of quality engineering [12], addresses quality in two main areas: off-line and on-line quality control. Both of these areas are very cost sensitive in the decisions that are made with respect to the activities in each. Off-line quality control refers to the improvement in quality in the product and process development stages. On-line quality control refers to the monitoring of current manufacturing processes to verify the quality levels produced [13]. The most important difference between a classical experimentaldesign and a Taguchi methodbased robust design technique is that the former tends to focus solely on the mean of the quality characteristic, while the ","PeriodicalId":207087,"journal":{"name":"International Journal of Advanced Materials Manufacturing and Characterization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128900188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信