Sara Cuadros, Tommaso Bortolato, Alberto Vega-Peñaloza, Luca Dell'Amico
{"title":"Modern Photocatalytic Strategies in Natural Product Synthesis.","authors":"Sara Cuadros, Tommaso Bortolato, Alberto Vega-Peñaloza, Luca Dell'Amico","doi":"10.1007/978-3-031-11783-1_1","DOIUrl":"https://doi.org/10.1007/978-3-031-11783-1_1","url":null,"abstract":"<p><p>Modern photocatalysis has proven its generality for the development and functionalization of native functionalities. To date, the field has found broad applications in diverse research areas, including the total synthesis of natural products. This contribution covers recent reports of total syntheses involving as a key step a photocatalytic reaction. Among the selected examples, the photocatalytic processes proceed in a highly chemo-, regio-, and stereoselective manner, thereby allowing the rapid access to structurally complex architectures under light-driven conditions.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"120 ","pages":"1-104"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10464866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nomenclature: Herbal Taxonomy in the Global Commerce of Botanicals.","authors":"Roy Upton","doi":"10.1007/978-3-031-26768-0_3","DOIUrl":"https://doi.org/10.1007/978-3-031-26768-0_3","url":null,"abstract":"<p><p>In the world trade of medicinal plants, the naming of plants is fundamental to understanding which species are acceptable for therapeutic use. There are a variety of nomenclatural systems that are used, inclusive of common names, Latinized binomials, Galenic or pharmaceutical names, and pharmacopeial definitions. Latinized binomials are the primary system used for naming wild plants, but these alone do not adequately define medicinal plant parts. Each system has its specific applications, advantages, and disadvantages. The topic of medicinal plant nomenclature is discussed broadly by underscoring when and how varying nomenclatural systems should be used. It is emphasized that pharmacopeial definitions represent the only naming system that integrates plant identity, relevant plant parts, and the specific quality metrics to which a material must comply, thus affording the most appropriate identification method available for medicinal plant materials.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"122 ","pages":"221-260"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10116065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Chemistry of Agarwood Odorants.","authors":"N. Baldovini","doi":"10.1007/978-3-030-92030-2_2","DOIUrl":"https://doi.org/10.1007/978-3-030-92030-2_2","url":null,"abstract":"","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"43 1","pages":"47-100"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78371663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Genus Walsura: A Rich Resource of Bioactive Limonoids, Triterpenoids, and Other Types of Compounds.","authors":"N. Son","doi":"10.1007/978-3-030-92030-2_4","DOIUrl":"https://doi.org/10.1007/978-3-030-92030-2_4","url":null,"abstract":"","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"22 1","pages":"131-177"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76515379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimalarial Natural Products.","authors":"David G I Kingston, Maria Belen Cassera","doi":"10.1007/978-3-030-89873-1_1","DOIUrl":"https://doi.org/10.1007/978-3-030-89873-1_1","url":null,"abstract":"<p><p>Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"117 ","pages":"1-106"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39641909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus.","authors":"C. Hanifin, Y. Kudo, M. Yotsu-Yamashita","doi":"10.1007/978-3-030-92030-2_3","DOIUrl":"https://doi.org/10.1007/978-3-030-92030-2_3","url":null,"abstract":"","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"1 1","pages":"101-130"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88372134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Antimalarial Natural Products.","authors":"David J. I. Kingston, M. Cassera","doi":"10.1007/978-3-030-89873-1_2","DOIUrl":"https://doi.org/10.1007/978-3-030-89873-1_2","url":null,"abstract":"","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"11 1","pages":"C1"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76933018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Søren Brøgger Christensen, Henrik Toft Simonsen, Nikolai Engedal, Poul Nissen, Jesper Vuust Møller, Samuel R Denmeade, John T Isaacs
{"title":"From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development.","authors":"Søren Brøgger Christensen, Henrik Toft Simonsen, Nikolai Engedal, Poul Nissen, Jesper Vuust Møller, Samuel R Denmeade, John T Isaacs","doi":"10.1007/978-3-030-64853-4_2","DOIUrl":"https://doi.org/10.1007/978-3-030-64853-4_2","url":null,"abstract":"<p><p>Thapsigargin, the first representative of the hexaoxygenated guaianolides, was isolated 40 years ago in order to understand the skin-irritant principles of the resin of the umbelliferous plant Thapsia garganica. The pronounced cytotoxicity of thapsigargin is caused by highly selective inhibition of the intracellular sarco-endoplasmic Ca<sup>2+</sup>-ATPase (SERCA) situated on the membrane of the endo- or sarcoplasmic reticulum. Thapsigargin is selective to the SERCA pump and to a minor extent the secretory pathway Ca<sup>2+</sup>/Mn<sup>2+</sup> ATPase (SPCA) pump. Thapsigargin has become a tool for investigation of the importance of SERCA in intracellular calcium homeostasis. In addition, complex formation of thapsigargin with SERCA has enabled crystallization and structure determination of calcium-free states by X-ray crystallography. These results led to descriptions of the mechanism of action and kinetic properties of SERCA and other ATPases. Inhibition of SERCA depletes Ca<sup>2+</sup> from the sarco- and endoplasmic reticulum provoking the unfolded protein response, and thereby has enabled new studies on the mechanism of cell death. Development of protocols for selective transformation of thapsigargin disclosed the chemistry and facilitated total synthesis of the molecule. Conversion of trilobolide into thapsigargin offered an economically feasible sustainable source of thapsigargin, which enables a future drug production. Principles for prodrug development were used by conjugating a payload derived from thapsigargin with a hydrophilic peptide selectively cleaved by proteases in the tumor. Mipsagargin was developed in order to obtain a drug for treatment of cancer diseases characterized by the presence of prostate specific membrane antigen (PSMA) in the neovascular tissue of the tumors. Even though mipsagargin showed interesting clinical effects the results did not encourage funding and consequently the attempt to register the drug has been abandoned. In spite of this disappointing fact, the research performed to develop the drug has resulted in important scientific discoveries concerning the chemistry, biosynthesis and biochemistry of sesquiterpene lactones, the mechanism of action of ATPases including SERCA, mechanisms for cell death caused by the unfolded protein response, and the use of prodrugs for cancer-targeting cytotoxins. The presence of toxins in only some species belonging to Thapsia also led to a major revision of the taxonomy of the genus.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"115 ","pages":"59-114"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25543638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karina L Silva-Brandão, André V L Freitas, Márcio Zikán Cardoso, Rodrigo Cogni, Ana Beatriz Barros de Morais
{"title":"The Chemistry and Chemical Ecology of Lepidopterans as Investigated in Brazil.","authors":"Karina L Silva-Brandão, André V L Freitas, Márcio Zikán Cardoso, Rodrigo Cogni, Ana Beatriz Barros de Morais","doi":"10.1007/978-3-030-80560-9_2","DOIUrl":"https://doi.org/10.1007/978-3-030-80560-9_2","url":null,"abstract":"<p><p>The interdisciplinary field of Chemical Ecology in Brazil is currently composed of groups that emerged through the pioneering studies of Keith Spalding Brown Jr. and José Tércio Barbosa Ferreira. Following Keith Brown 's steps, José Roberto Trigo continued investigating the role of plant natural products in mediating the association among insects and their host plants, mainly in the Order Lepidoptera. The role of pyrrolizidine alkaloids in those associations was investigated extensively by Brown and Trigo, and most of what is currently known on this subject is based on their studies. The present work acknowledges their contribution to the Brazilian chemical ecology field and on insect-plant communication studies mediated by different chemical compounds.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"116 ","pages":"37-66"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in the Chemistry and Pharmacology of Cryptolepine.","authors":"Steven D Shnyder, Colin W Wright","doi":"10.1007/978-3-030-64853-4_4","DOIUrl":"https://doi.org/10.1007/978-3-030-64853-4_4","url":null,"abstract":"<p><p>Cryptolepine, the principal constituent of the West African climbing shrub Cryptolepis sanguinolenta, continues to be of interest as a lead to new therapeutic agents, especially for the treatment of protozoal infections and cancer. This contribution reviews the research published in the last decade, highlighting new synthesis routes to cryptolepine and to analogs of this alkaloid, as well as their pharmacology. Studies relating to the use of C. sanguinolenta as an herbal medicine for the treatment of malaria are discussed, as well as the development of analogs of cryptolepine as leads to new agents for the treatment of malaria, trypanosomiasis, and cancer with an emphasis on the pharmacological mechanisms involved. Other potential therapeutic applications include antimicrobial, antidiabetic, and anti-inflammatory activities; the pharmacokinetics and toxicity of cryptolepine are also reviewed.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"115 ","pages":"177-203"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25542127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}