Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian最新文献

筛选
英文 中文
A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD) 一种计算流体与粒子动力学(CFPD)耦合算法
A. Kim, Hyeon-Ju Kim
{"title":"A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD)","authors":"A. Kim, Hyeon-Ju Kim","doi":"10.5772/INTECHOPEN.86895","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86895","url":null,"abstract":"Computational fluid dynamics (CFD) and particle hydrodynamics (PHD) have been developed almost independently. CFD is classified into Eulerian and Lagrangian. The Eulerian approach observes fluid motion at specific locations in the space, and the Lagrangian approach looks at fluid motion where the observer follows an individual fluid parcel moving through space and time. In classical mechanics, particle dynamic simulations include molecular dynamics, Brownian dynamics, dissipated particle dynamics, Stokesian dynamics, and granular dynamics (often called discrete element method). Dissipative hydrodynamic method unifies these dynamic simulation algorithms and provides a general view of how to mimic particle motion in gas and liquid. Studies on an accurate and rigorous coupling of CFD and PHD are in literature still in a growing stage. This chapter shortly reviews the past development of CFD and PHD and proposes a general algorithm to couple the two dynamic simulations without losing theoretical rigor and numerical accuracy of the coupled simulation.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122119291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Scalar Conservation Laws 标量守恒定律
Baver Okutmustur
{"title":"Scalar Conservation Laws","authors":"Baver Okutmustur","doi":"10.5772/INTECHOPEN.83637","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83637","url":null,"abstract":"We present a theoretical aspect of conservation laws by using simplest scalar models with essential properties. We start by rewriting the general scalar conservation law as a quasilinear partial differential equation and solve it by method of characteristics. Here we come across with the notion of strong and weak solutions depending on the initial value of the problem. Taking into account a special initial data for the left and right side of a discontinuity point, we get the related Riemann problem. An illustration of this problem is provided by some examples. In the remaining part of the chapter, we extend this analysis to the gas dynamics given in the Euler system of equations in one dimension. The transformations of this system into the Lagrangian coordinates follow by applying a suitable change of coordinates which is one of the main issues of this section. We next introduce a first-order Godunov finite volume scheme for scalar conservation laws which leads us to write Godunov schemes in both Eulerian and Lagrangian coordinates in one dimension where, in particular, the Lagrangian scheme is reformulated as a finite volume method. Finally, we end up the chapter by providing a comparison of Eulerian and Lagrangian approaches.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125047866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Modeling of Fluid-Solid Two-Phase Geophysical Flows 流固两相地球物理流动模拟
Zhenhua Huang, Cheng-Hsien Lee
{"title":"Modeling of Fluid-Solid Two-Phase Geophysical Flows","authors":"Zhenhua Huang, Cheng-Hsien Lee","doi":"10.5772/INTECHOPEN.81449","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81449","url":null,"abstract":"Fluid-solid two-phase flows are frequently encountered in geophysical flow problems such as sediment transport and submarine landslides. It is still a challenge to the current experiment techniques to provide information such as detailed flow and pressure fields of each phase, which however is easily obtainable through numerical simulations using fluid-solid two-phase flow models. This chapter focuses on the Eulerian-Eulerian approach to two-phase geophysical flows. Brief derivations of the governing equations and some closure models are provided, and the numerical implementation in the finite-volume framework of OpenFOAM® is described. Two applications in sediment transport and submarine landslides are also included at the end of the chapter.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133448238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray 喷嘴喷雾液滴分散的欧拉-拉格朗日耦合模型
Carlos G. Sedano, C. Aguirre, A. Brizuela
{"title":"An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray","authors":"Carlos G. Sedano, C. Aguirre, A. Brizuela","doi":"10.5772/INTECHOPEN.81110","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81110","url":null,"abstract":"In this chapter, an Euler-Lagrangian double-way coupled model is presented for simulating the liquid particle dispersion ejected from a high-pressure nozzle. The Eulerian code is advanced regional prediction system (ARPS), developed by Center of Analysis and Prediction of Storm (CAPS) and Oklahoma University, USA, which is specialized in weather simulation. This code is the double way coupled with a Lagrangian one-particle model. The theoretical remarks of the double-way coupling, the simulation of the liquid droplet trajectory, and, finally, the droplet collision in the spray cloud using a binary collision model are descripts. The results of droplet velocities and diameters are compared with experimental laboratory measurements. Finally, agrochemical spraying over a cultivated field in weak wind and high air temperature conditions is showed.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124559716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Response Behavior of Nonspherical Particles in Homogeneous Isotropic Turbulent Flows 非球形粒子在均匀各向同性湍流中的响应行为
S. Laín
{"title":"Response Behavior of Nonspherical Particles in Homogeneous Isotropic Turbulent Flows","authors":"S. Laín","doi":"10.5772/INTECHOPEN.81045","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81045","url":null,"abstract":"In this study, the responsiveness of nonspherical particles, specifically ellipsoids and cylinders, in homogeneous and isotropic turbulence is investigated through kinematic simulations of the fluid velocity field. Particle tracking in such flow field includes not only the translational and rotational components but also the orientation through the Euler angles and parameters. Correlations for the flow coefficients, forces and torques, of the nonspherical particles in the range of intermediate Reynolds number are obtained from the literature. The Lagrangian time autocorrelation function, the translational and rotational particle response, and preferential orientation of the nonspherical particles in the turbulent flow are studied as function of their shape and inertia. As a result, particle autocorrelation functions, translational and rotational, decrease with aspect ratio, and particle linear root mean square velocity increases with aspect ratio, while rotational root mean square velocity first increases, reaches a maximum around aspect ratio 2, and then decreases again. Finally, cylinders do not present any preferential orientation in homogeneous isotropic turbulence, but ellipsoids do, resulting in preferred orientations that maximize the cross section exposed to the flow.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"46 13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127184974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信