{"title":"喷嘴喷雾液滴分散的欧拉-拉格朗日耦合模型","authors":"Carlos G. Sedano, C. Aguirre, A. Brizuela","doi":"10.5772/INTECHOPEN.81110","DOIUrl":null,"url":null,"abstract":"In this chapter, an Euler-Lagrangian double-way coupled model is presented for simulating the liquid particle dispersion ejected from a high-pressure nozzle. The Eulerian code is advanced regional prediction system (ARPS), developed by Center of Analysis and Prediction of Storm (CAPS) and Oklahoma University, USA, which is specialized in weather simulation. This code is the double way coupled with a Lagrangian one-particle model. The theoretical remarks of the double-way coupling, the simulation of the liquid droplet trajectory, and, finally, the droplet collision in the spray cloud using a binary collision model are descripts. The results of droplet velocities and diameters are compared with experimental laboratory measurements. Finally, agrochemical spraying over a cultivated field in weak wind and high air temperature conditions is showed.","PeriodicalId":203696,"journal":{"name":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray\",\"authors\":\"Carlos G. Sedano, C. Aguirre, A. Brizuela\",\"doi\":\"10.5772/INTECHOPEN.81110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, an Euler-Lagrangian double-way coupled model is presented for simulating the liquid particle dispersion ejected from a high-pressure nozzle. The Eulerian code is advanced regional prediction system (ARPS), developed by Center of Analysis and Prediction of Storm (CAPS) and Oklahoma University, USA, which is specialized in weather simulation. This code is the double way coupled with a Lagrangian one-particle model. The theoretical remarks of the double-way coupling, the simulation of the liquid droplet trajectory, and, finally, the droplet collision in the spray cloud using a binary collision model are descripts. The results of droplet velocities and diameters are compared with experimental laboratory measurements. Finally, agrochemical spraying over a cultivated field in weak wind and high air temperature conditions is showed.\",\"PeriodicalId\":203696,\"journal\":{\"name\":\"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.81110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray
In this chapter, an Euler-Lagrangian double-way coupled model is presented for simulating the liquid particle dispersion ejected from a high-pressure nozzle. The Eulerian code is advanced regional prediction system (ARPS), developed by Center of Analysis and Prediction of Storm (CAPS) and Oklahoma University, USA, which is specialized in weather simulation. This code is the double way coupled with a Lagrangian one-particle model. The theoretical remarks of the double-way coupling, the simulation of the liquid droplet trajectory, and, finally, the droplet collision in the spray cloud using a binary collision model are descripts. The results of droplet velocities and diameters are compared with experimental laboratory measurements. Finally, agrochemical spraying over a cultivated field in weak wind and high air temperature conditions is showed.