{"title":"A new polymorphic form of Na2SeO3·5H2O: structure determination from X-ray laboratory powder diffraction","authors":"G. Nénert","doi":"10.1017/s0885715623000301","DOIUrl":"https://doi.org/10.1017/s0885715623000301","url":null,"abstract":"A new polymorphic form of sodium selenite pentahydrate is reported in this contribution. We determined its crystal structure from laboratory powder diffraction data recorded at room temperature. It crystallizes in the monoclinic system P21/n with Z = 4. The lattice parameters are a = 15.01473(16) Å, b = 7.03125(7) Å, c = 8.13336(10) Å, β = 98.4458(10)°, and V = 849.345(16) Å3. The crystal structure exhibits a layered structure with isolated 1D chains running along the b-axis.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47121380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synchrotron powder diffraction data for some smectite clay mineral standards","authors":"J. Reid","doi":"10.1017/s0885715623000283","DOIUrl":"https://doi.org/10.1017/s0885715623000283","url":null,"abstract":"Synchrotron powder diffraction data is presented for a series of relatively phase-pure smectite clay mineral standards obtained from the Clay Minerals Society. Rietveld refinement using a model for turbostratic disorder was performed to estimate the lattice parameters and mineral impurities in the smectite standards. Bragg reflection lists and raw data have been provided for inclusion in the Powder Diffraction File.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41723220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal structure and X-ray powder diffraction data of barium copper iodate Ba2Cu(IO3)6","authors":"Xiang Xu, Chong Liu, K.-C. Wu, Hongxiang Chen","doi":"10.1017/s0885715623000258","DOIUrl":"https://doi.org/10.1017/s0885715623000258","url":null,"abstract":"X-ray powder diffraction data, unit-cell parameters, and space group for the barium copper iodate, Ba2Cu(IO3)6, are reported [a = 7.48540(15) Å, b = 7.51753(19) Å, c = 7.64259(17) Å, α = 98.8823(7)°, β = 95.0749(7)°, γ = 97.6297(7)°, V = 418.528(9) Å3, Z = 1, and space group P\u0000 \u0000 \u0000 $bar{1}$\u0000 \u0000 ]. All measured lines are indexed and are consistent with the corresponding space group. The single-crystal diffraction data of Ba2Cu(IO3)6 are also reported [a = 7.493(3) Å, b = 7.521(6) Å, c = 7.644(5) Å, α = 98.855(18)°, β = 95.060(16)°, γ = 97.62(2)°, V = 419.3(5) Å3, Z = 1, and space group P\u0000 \u0000 \u0000 $bar{1}$\u0000 \u0000 ]. The crystal structure of Ba2Cu(IO3)6 features isolated [Cu(IO3)6]4− anionic clusters separated by Ba2+ cations. The experimental powder diffraction pattern matches well with the simulated pattern derived from the single crystal data.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41346377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal structure of 5-(3-methoxyphenyl)indoline-2,3-dione","authors":"A. Gorodnova, V. Ivanov, A. Kurkin, A. Dmitrienko","doi":"10.1017/s0885715623000192","DOIUrl":"https://doi.org/10.1017/s0885715623000192","url":null,"abstract":"The crystal structure of 5-(3-methoxyphenyl)indoline-2,3-dione (C15H11NO3) was solved and refined using laboratory powder diffraction data and optimized using density functional techniques. The title compound crystallizes in space group Pbca with a = 11.1772(3) Å, b = 7.92536(13) Å, c = 27.0121(7) Å, and V = 2392.82(10) Å3. The asymmetric unit contains one molecule. Isatin molecules are joined into almost flat chains along the a direction by N–H⋯O bonds. The chains are linked into layers by π-stacking interactions. Finally, the third dimension of the crystal is formed by weaker C–H⋯π and C–H⋯O contacts.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43634620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tawnee M. Ens, J. Kaduk, Anya Vieira Dosen, T. Blanton
{"title":"Crystal structure of meglumine diatrizoate, (C7H18NO5)(C11H8I3N2O4)","authors":"Tawnee M. Ens, J. Kaduk, Anya Vieira Dosen, T. Blanton","doi":"10.1017/s0885715623000180","DOIUrl":"https://doi.org/10.1017/s0885715623000180","url":null,"abstract":"The crystal structure of meglumine diatrizoate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Meglumine diatrizoate crystallizes in space group P21 (#4) with a = 10.74697(4), b = 6.49364(2), c = 18.52774(7) Å, β = 90.2263(3), V = 1292.985(5) Å3, and Z = 2. Two different crystal structures, which yielded essentially identical refinement residuals and positions of the non-H atoms, were obtained. The differences were in the H atom positions and the hydrogen bonding. One structure was 123.0 kJ/mol/cell lower in energy than the other and was adopted for the final description. The crystal structure consists of alternating double layers of cations and anions along the c-axis. The hydrogen bonds link the cations and anions into a three-dimensional framework. Each of the hydrogen atoms on the ammonium nitrogen of the cation acts as a donor in a strong N–H⋯O hydrogen bond. One of these is to a hydroxyl group of another cation, and the other is to the carboxylate group of the anion. Each of the amide nitrogen atoms of the anion forms a strong N–H⋯O intermolecular hydrogen bond, one to a carbonyl and the other to a carboxylate group. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49655494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calendar of Short Courses and Workshops","authors":"Gang Wang","doi":"10.1017/s0885715623000210","DOIUrl":"https://doi.org/10.1017/s0885715623000210","url":null,"abstract":"3–29 September 2023 ESRF/ILL International Student Summer Programme on X-Ray and Neutron Science European Photon & Neutron Science Campus (EPN), Grenoble, France [Info: https://www.esrf.fr/summerschool2023] 4–15 September 2023 25th JCNS Laboratory Course-Neutron Scattering 2023 Jülich/Garching, Germany [Info: https://www.fz-juelich.de/en/jcns/expertise/conferences-andworkshops/labcourse/labcourse-2023]","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"165 - 165"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41833940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Powder X-ray diffraction intensities of corundum calculated by conventional and density functional theory methods and extracted by deconvolutional treatment on experimental data","authors":"T. Ida","doi":"10.1017/S0885715623000131","DOIUrl":"https://doi.org/10.1017/S0885715623000131","url":null,"abstract":"Least-squares analysis on the diffraction intensity values certified for NIST SRM676a and SRM1976c α-Al2O3 (corundum) have shown that the intensities of SRM1976c can be simulated by the March-Dollase preferred orientation model along the (001)-direction. Diffraction intensities of randomly oriented corundum crystallites have been calculated from electron density data obtained by conventional and density functional theory (DFT) calculations, on the assumption of independent and similar atomic displacements for Al and O atoms. The results of DFT calculations support that the strongest peak of randomly oriented α-Al2O3 crystalline powder should be 113-reflection, though the intensities simulated by DFT calculations are not closer to NIST SRM676a intensities than those expected for a fully ionized model ${rm Al}_2^{3 + } {rm O}_3^{2-}$. Diffraction data of two types of relatively fine (nominally 2–3 μm and ca 0.3 μm) α-Al2O3 powder have been collected and processed by a deconvolutional treatment (DCT). Integrated peak intensities extracted from the DCT data by an individual peak profile fitting method also support that the 113-reflection is the strongest reflection of randomly oriented α-Al2O3 crystalline powder.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"81 - 89"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44953159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Rodriguez, John Krukar, N. Valdez, James Z. Harris, Kathryn A. Perkins, J. Lyza, T. Fawcett, Anja Vieira Dosen
{"title":"PDJ volume 38 issue 2 Cover and Front matter","authors":"M. A. Rodriguez, John Krukar, N. Valdez, James Z. Harris, Kathryn A. Perkins, J. Lyza, T. Fawcett, Anja Vieira Dosen","doi":"10.1017/S0885715623000088","DOIUrl":"https://doi.org/10.1017/S0885715623000088","url":null,"abstract":"","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"f1 - f7"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44710492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}