PLoS GeneticsPub Date : 2023-07-17DOI: 10.1101/2022.06.29.498106
Ana Roca-Umbert, Jorge Garcia-Calleja, Marina Vogel-González, Alejandro Fierro-Villegas, Gerard Ill-Raga, Víctor Herrera-Fernández, Anja Bosnjak, G. Muntané, Esteban Gutiérrez, F. Campelo, Raul Vicente, E. Bosch
{"title":"Human genetic adaptation related to cellular zinc homeostasis","authors":"Ana Roca-Umbert, Jorge Garcia-Calleja, Marina Vogel-González, Alejandro Fierro-Villegas, Gerard Ill-Raga, Víctor Herrera-Fernández, Anja Bosnjak, G. Muntané, Esteban Gutiérrez, F. Campelo, Raul Vicente, E. Bosch","doi":"10.1101/2022.06.29.498106","DOIUrl":"https://doi.org/10.1101/2022.06.29.498106","url":null,"abstract":"SLC30A9 encodes a ubiquitously zinc transporter (ZnT9) and has been consistently suggested as a candidate for positive selection in humans. However, no direct adaptive molecular phenotype has been demonstrated. Our results provide evidence for directional selection operating in two major complementary haplotypes in Africa and East Asia. These haplotypes are associated with differential gene expression but also differ in the Met50Val substitution (rs1047626) in ZnT9, which we show is found in homozygosis in the Denisovan genome and displays accompanying signatures suggestive of archaic introgression. Although we found no significant differences in systemic zinc content between individuals with different rs1047626 genotypes, we demonstrate that the expression of the derived isoform (ZnT9 50Val) in HEK293 cells shows a gain of function when compared with the ancestral (ZnT9 50Met) variant. Notably, the ZnT9 50Val variant was found associated with differences in zinc handling by the mitochondria and endoplasmic reticulum, with an impact on mitochondrial metabolism. Given the essential role of the mitochondria in skeletal muscle and since the derived allele at rs1047626 is known to be associated with greater susceptibility to several neuropsychiatric traits, we propose that adaptation to cold may have driven this selection event, while also impacting predisposition to neuropsychiatric disorders in modern humans. Author Summary Contrasting continental signatures of positive natural selection have been previously found in the human SLC30A9 gene encoding the protein ZnT9, which transports zinc across cell membranes. Here we investigate the genetic variants that have been targeted by natural selection in the surrounding region of this gene and which molecular and whole-body changes may have brought about. We found that two major SLC30A9 variant combinations (haplotypes) that are extremely frequent in Africa and East Asia, respectively, are expressed differentially. These two haplotypes also differ at one site that creates an amino acid difference at ZnT9; the version most often found outside Africa avoiding zinc overload in the endoplasmic reticulum and mitochondria and directly influencing mitochondrial activity. Moreover, we found that this substitution, which is known to be associated with greater susceptibility to several neuropsychiatric disorders, is present in the Denisova and displays accompanying patterns of variation that could be suggestive of adaptive introgression. Since mitochondria play an important role in skeletal muscle energy metabolism, we speculate that adaptation to cold may have driven this selection event outside Africa, while also impacting predisposition to neuropsychiatric disorders in modern humans.","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49290868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-13eCollection Date: 2023-07-01DOI: 10.1371/journal.pgen.1010828
Andrew T Moehlman, Gil Kanfer, Richard J Youle
{"title":"Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage.","authors":"Andrew T Moehlman, Gil Kanfer, Richard J Youle","doi":"10.1371/journal.pgen.1010828","DOIUrl":"10.1371/journal.pgen.1010828","url":null,"abstract":"<p><p>The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010828"},"PeriodicalIF":4.5,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-13eCollection Date: 2023-07-01DOI: 10.1371/journal.pgen.1010845
Taylor N Ayers, Matthew L Nicotra, Miler T Lee
{"title":"Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos.","authors":"Taylor N Ayers, Matthew L Nicotra, Miler T Lee","doi":"10.1371/journal.pgen.1010845","DOIUrl":"10.1371/journal.pgen.1010845","url":null,"abstract":"<p><p>Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010845"},"PeriodicalIF":4.5,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-10eCollection Date: 2023-07-01DOI: 10.1371/journal.pgen.1010519
Lauren G Chukrallah, Sarah Potgieter, Lisa Chueh, Elizabeth M Snyder
{"title":"Two RNA binding proteins, ADAD2 and RNF17, interact to form a heterogeneous population of novel meiotic germ cell granules with developmentally dependent organelle association.","authors":"Lauren G Chukrallah, Sarah Potgieter, Lisa Chueh, Elizabeth M Snyder","doi":"10.1371/journal.pgen.1010519","DOIUrl":"10.1371/journal.pgen.1010519","url":null,"abstract":"<p><p>Mammalian male germ cell differentiation relies on complex RNA biogenesis events, many of which occur in non-membrane bound organelles termed RNA germ cell granules that are rich in RNA binding proteins (RBPs). Though known to be required for male germ cell differentiation, we understand little of the relationships between the numerous granule subtypes. ADAD2, a testis specific RBP, is required for normal male fertility and forms a poorly characterized granule in meiotic germ cells. This work aimed to understand the role of ADAD2 granules in male germ cell differentiation by clearly defining their molecular composition and relationship to other granules. Biochemical analyses identified RNF17, a testis specific RBP that forms meiotic male germ cell granules, as an ADAD2-interacting protein. Phenotypic analysis of Adad2 and Rnf17 mutants identified a rare post-meiotic chromatin defect, suggesting shared biological roles. ADAD2 and RNF17 were found to be dependent on one another for granularization and together form a previously unstudied set of germ cell granules. Based on co-localization studies with well-characterized granule RBPs and organelle-specific markers, a subset of the ADAD2-RNF17 granules are found to be associated with the intermitochondrial cement and piRNA biogenesis. In contrast, a second, morphologically distinct population of ADAD2-RNF17 granules co-localized with the translation regulators NANOS1 and PUM1, along with the molecular chaperone PDI. These large granules form a unique funnel-shaped structure that displays distinct protein subdomains and is tightly associated with the endoplasmic reticulum. Developmental studies suggest the different granule populations represent different phases of a granule maturation process. Lastly, a double Adad2-Rnf17 mutant model suggests the interaction between ADAD2 and RNF17, as opposed to loss of either, is the likely driver of the Adad2 and Rnf17 mutant phenotypes. These findings shed light on the relationship between germ cell granule pools and define new genetic approaches to their study.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010519"},"PeriodicalIF":4.5,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10225471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-07eCollection Date: 2023-07-01DOI: 10.1371/journal.pgen.1010807
Christopher J Adams, Mitchell Conery, Benjamin J Auerbach, Shane T Jensen, Iain Mathieson, Benjamin F Voight
{"title":"Regularized sequence-context mutational trees capture variation in mutation rates across the human genome.","authors":"Christopher J Adams, Mitchell Conery, Benjamin J Auerbach, Shane T Jensen, Iain Mathieson, Benjamin F Voight","doi":"10.1371/journal.pgen.1010807","DOIUrl":"10.1371/journal.pgen.1010807","url":null,"abstract":"<p><p>Germline mutation is the mechanism by which genetic variation in a population is created. Inferences derived from mutation rate models are fundamental to many population genetics methods. Previous models have demonstrated that nucleotides flanking polymorphic sites-the local sequence context-explain variation in the probability that a site is polymorphic. However, limitations to these models exist as the size of the local sequence context window expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of regularization to generate parsimonious models and lack of quantified uncertainty in estimated rates to facilitate comparison between models. To address these limitations, we developed Baymer, a regularized Bayesian hierarchical tree model that captures the heterogeneous effect of sequence contexts on polymorphism probabilities. Baymer implements an adaptive Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to estimate the posterior distributions of sequence-context based probabilities that a site is polymorphic. We show that Baymer accurately infers polymorphism probabilities and well-calibrated posterior distributions, robustly handles data sparsity, appropriately regularizes to return parsimonious models, and scales computationally at least up to 9-mer context windows. We demonstrate application of Baymer in three ways-first, identifying differences in polymorphism probabilities between continental populations in the 1000 Genomes Phase 3 dataset, second, in a sparse data setting to examine the use of polymorphism models as a proxy for de novo mutation probabilities as a function of variant age, sequence context window size, and demographic history, and third, comparing model concordance between different great ape species. We find a shared context-dependent mutation rate architecture underlying our models, enabling a transfer-learning inspired strategy for modeling germline mutations. In summary, Baymer is an accurate polymorphism probability estimation algorithm that automatically adapts to data sparsity at different sequence context levels, thereby making efficient use of the available data.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010807"},"PeriodicalIF":4.5,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-03eCollection Date: 2023-07-01DOI: 10.1371/journal.pgen.1010793
Lucy Granat, Debbra Y Knorr, Daniel C Ranson, Emma L Hamer, Ram Prosad Chakrabarty, Francesca Mattedi, Laura Fort-Aznar, Frank Hirth, Sean T Sweeney, Alessio Vagnoni, Navdeep S Chandel, Joseph M Bateman
{"title":"Yeast NDI1 reconfigures neuronal metabolism and prevents the unfolded protein response in mitochondrial complex I deficiency.","authors":"Lucy Granat, Debbra Y Knorr, Daniel C Ranson, Emma L Hamer, Ram Prosad Chakrabarty, Francesca Mattedi, Laura Fort-Aznar, Frank Hirth, Sean T Sweeney, Alessio Vagnoni, Navdeep S Chandel, Joseph M Bateman","doi":"10.1371/journal.pgen.1010793","DOIUrl":"10.1371/journal.pgen.1010793","url":null,"abstract":"<p><p>Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010793"},"PeriodicalIF":4.5,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10159439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-01DOI: 10.1371/journal.pgen.1010837
Pengfei Li, Giovanni Messina, Christian F Lehner
{"title":"Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D.","authors":"Pengfei Li, Giovanni Messina, Christian F Lehner","doi":"10.1371/journal.pgen.1010837","DOIUrl":"https://doi.org/10.1371/journal.pgen.1010837","url":null,"abstract":"<p><p>Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010837"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9862689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arginine methyltransferases PRMT2 and PRMT3 are essential for biosynthesis of plant-polysaccharide-degrading enzymes in Penicillium oxalicum.","authors":"Shuai Zhao, Li-Xiang Mo, Wen-Tong Li, Lian-Li Jiang, Yi-Yuan Meng, Jian-Feng Ou, Lu-Sheng Liao, Yu-Si Yan, Xue-Mei Luo, Jia-Xun Feng","doi":"10.1371/journal.pgen.1010867","DOIUrl":"https://doi.org/10.1371/journal.pgen.1010867","url":null,"abstract":"<p><p>Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010867"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-01DOI: 10.1371/journal.pgen.1010832
Marina Athanasouli, Nermin Akduman, Waltraud Röseler, Penghieng Theam, Christian Rödelsperger
{"title":"Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota.","authors":"Marina Athanasouli, Nermin Akduman, Waltraud Röseler, Penghieng Theam, Christian Rödelsperger","doi":"10.1371/journal.pgen.1010832","DOIUrl":"https://doi.org/10.1371/journal.pgen.1010832","url":null,"abstract":"<p><p>Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010832"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10159438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-07-01DOI: 10.1101/2022.10.13.512103
Thomas W. Willis, C. Wallace
{"title":"Accurate detection of shared genetic architecture from GWAS summary statistics in the small-sample context","authors":"Thomas W. Willis, C. Wallace","doi":"10.1101/2022.10.13.512103","DOIUrl":"https://doi.org/10.1101/2022.10.13.512103","url":null,"abstract":"Assessment of the genetic similarity between two phenotypes can provide insight into a common genetic aetiology and inform the use of pleiotropy-informed, cross-phenotype analytical methods to identify novel genetic associations. The genetic correlation is a well-known means of quantifying and testing for genetic similarity between traits, but its estimates are subject to comparatively large sampling error. This makes it unsuitable for use in a small-sample context. We discuss the use of a nonparametric test of genetic similarity first introduced by Li et al. for application to GWAS summary statistics. We establish that the null distribution of the test statistic is modelled better by an extreme value distribution than a transformation of the standard exponential distribution as originally recommended by Li and colleagues. We show with simulation studies and real data from GWAS of 18 phenotypes from the UK Biobank that the test is to be preferred for use with small sample sizes, particularly when genetic effects are few and large, outperforming the genetic correlation and another nonparametric statistical test of independence. We find the test suitable for the detection of genetic similarity in the rare disease context. Author summary The genome-wide association study (GWAS) is a method used to identify genetic variants which contribute to the risk of developing disease. These genetic variants are frequently shared between conditions, such that the study of the genetic basis of one disease can be informed by knowledge of another, similar disease. This approach can be productive where the disease in question is rare such that a GWAS has less power to associate variants with the disease, but there exist larger GWAS of similar diseases. Existing methods do not measure genetic similarity precisely when patients are few. Here we assess a previously published method of testing for genetic similarity between pairs of diseases using GWAS data, the ‘GPS’ test, against three other methods with the use of real and simulated data. We present a new computational procedure for carrying out the test and show that the GPS test is superior to its comparators in identifying genetic similarity when the sample size is small and when the genetic similarity signal is less strong. Use of the test will enable accurate detection of genetic similarity and the study of rarer conditions using data from better-characterised diseases.","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45888773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}