S. Agarie, M. Tada, Masako Kimura, Hitoshi Suzuki, M. Morokuma, M. Toyota, I. Nakamura
{"title":"Growth and salt accumulation capacity of the common ice plant in the tsunami-affected soil","authors":"S. Agarie, M. Tada, Masako Kimura, Hitoshi Suzuki, M. Morokuma, M. Toyota, I. Nakamura","doi":"10.1080/1343943X.2022.2090392","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2090392","url":null,"abstract":"ABSTRACT Halophytes are salt-tolerant plant that grows naturally in saline areas where almost all conventional crops die due to NaCl toxicity. The common ice plant, Mesembryanthemum crystallinum L., an annual halophyte native to South Africa, tolerates high salinity levels and accumulates NaCl in a shoot at a high level. To check the availability of the ice plant for desalinization of soils, we cultured the ice plant in soils collected from 16 sites located along coastal regions in the prefectures of Miyagi and Iwate, where were attacked by the tsunami disaster in the wake of the 2011 earthquake off the Pacific coast of Tohoku on 11 March 2011. In the soils obtained from some tsunami affected areas, the growth was better than that in the non-contaminated soil. The factors associated with growth inhibition were suggested to be water ratio (an index of water content) and soil water permeability. The ice plant’s estimated biological yield ranged from 0.33 to 14.6 kg m−2, equivalent to 2.3 to 101.7 t ha−1. The sum of Na+ and Cl− was about 9.5 g in the shoot (31.8% on a dry weight basis), and the estimated total amount of these ions removed from salinized soil was 2.38 t ha−1. These results indicated that the common ice plant could be used as a crop under salinity and a tool for ameliorating NaCl from salinized soils. Graphical Abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44119711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sakaigaichi, Keisuke Suematsu, Y. Terajima, A. Kobâyashi, Yukari Kawata, Y. Kai
{"title":"Evaluation of mother and daughter root traits in sweet potato germplasm cultivated by direct planting","authors":"T. Sakaigaichi, Keisuke Suematsu, Y. Terajima, A. Kobâyashi, Yukari Kawata, Y. Kai","doi":"10.1080/1343943X.2022.2090393","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2090393","url":null,"abstract":"ABSTRACT Direct planting (i.e. the planting of seed roots) in sweet potato results in the formation of two root types – ‘mother’ and ‘daughter’ roots. High and stable daughter root yields are necessary to improve the acceptance of direct planting cultivation because mother roots have no commercial value. To establish a basis for the effective breeding, the root traits of 28 sweet potato genotypes cultivated by direct planting were evaluated for mother root weight, daughter root weight (DRW), total root weight (TRW), ratio of DRW to TRW (RDRW), and ratio of mother root enlargement. Significant differences between the genotypes were observed for all five traits (p < 0.01). However, we concluded that RDRW is a reliable indicator for performance under direct planting cultivation because it showed the highest estimated heritability (0.57), and genotypes with high RDRW also indicated notably low values for coefficient of variation. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43413157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanh thi Nguyen, A. Kamoshita, Poornima Ramalingam, Phoura Y
{"title":"Genetic analysis of root vascular traits in a population from two temperate japonica rice ecotypes","authors":"Hanh thi Nguyen, A. Kamoshita, Poornima Ramalingam, Phoura Y","doi":"10.1080/1343943X.2022.2085588","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2085588","url":null,"abstract":"ABSTRACT The genetic basis for root vascular traits in rice, despite its direct impacts on root axial and radial hydraulic conductivity, has not been widely studied compared with deep rooting traits. We used five phenotyping datasets (i.e. from maturity stage grown in upland field in 2013, and from vegetative and maturity stages grown in upland and lowland fields in 2019) to quantify the genotypic variations and genomic regions of root vascular traits in a temperate japonica mapping population (from lowland Otomemochi (OTM) and upland Yumenohatamochi (YHM)). YHM had larger stele transversal area (STA) and total late metaxylem area (LMXA), as well as higher deep root ratio and total root length at deeper layers (>30 cm) than OTM. Root vascular traits were significantly different among progenies in each dataset, and the size of genotype-by-environment interactions was comparable. Root vascular traits were not positively correlated with deep rooting traits. From the multi-environment analysis of all five datasets, four key genomic regions related to STA in both joint and separate analyses were detected on chromosome 2 (RM3703-RM6379, RM6933-RM3857), chromosome 4 (RM1388-RM5503) and chromosome 12 (RM247-RM155), with the first and third collocated with deep rooting traits. QTL-by-environment interaction was comparable to the main additive effect. This study is the first report on genomic regions of root vascular traits in a japonica mapping population. GRAPHICAL ABSTRACT","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41631307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Ishimaru, K. Sasaki, Patrick D. Lumanglas, Carlo Leo U. Cabral, C. Ye, M. Yoshimoto, Arvind Kumar, A. Henry
{"title":"Effect of drought stress on flowering characteristics in rice (Oryza sativa L.): a study using genotypes contrasting in drought tolerance and flower opening time","authors":"T. Ishimaru, K. Sasaki, Patrick D. Lumanglas, Carlo Leo U. Cabral, C. Ye, M. Yoshimoto, Arvind Kumar, A. Henry","doi":"10.1080/1343943X.2022.2085589","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2085589","url":null,"abstract":"ABSTRACT Rice is most susceptible to heat and drought stress at flowering stage, but flowering characteristics under drought stress are not well characterized. This study investigated flowering characteristics of rice genotypes contrasting in their flower opening time (FOT) and level of drought tolerance. Near-isogenic lines for the early-morning flowering trait (IR64+ qEMF3) and for drought tolerance (IR87707-445-B-B-B), and their recurrent parent cultivar (IR64) were used. IR64+ qEMF3 had stable earlier FOT than IR64 and IR87707-445-B-B-B under drought stress conditions. Drought stress occasionally affects FOT depending on genotype. The number of open spikelets was higher in IR87707-445-B-B-B than in IR64 and IR64+ qEMF3, and the difference among genotypes increased as the rice plants were subjected to more severe stress levels. Panicle temperature increased under drought stress conditions and was similar among genotypes when it was measured at the same time of day, demonstrating that earlier FOT in IR64+ qEMF3 must be beneficial to avoid heat stress at flowering under drought stress conditions. However, IR64+ qEMF3 did not exhibit drought avoidance, as evidenced by the root mass at depth. To assess the potential for the EMF trait to complement ongoing drought breeding efforts, heat tolerance among 13 advanced drought breeding lines and released cultivars was tested. Wide variation in heat tolerance at flowering was observed and, notably, none of the 13 lines possessed the EMF trait. This study therefore proposes that a breeding strategy that transfers the EMF trait into drought tolerant lines could enhance the resilience of rice spikelets to the combined stresses of heat and drought at flowering. Abbreviations: Analysis of variance (ANOVA), dry season (DS), early-morning flowering (EMF), flower opening time (FOT), near-isogenic line (NIL), panicle water potential (PWP), quantitative trait locus (QTL), wet season (WS) Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59803332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Tsukaguchi, Yuri Matsuno, Haruka Kobayashi, Nanako Kameda, Nana Matsue
{"title":"Identification and validation of quantitative trait loci for a parameter associated with nitrogen partitioning to grain using a population derived from japonica- and indica-type cultivars of rice (Oryza sativa L.)","authors":"T. Tsukaguchi, Yuri Matsuno, Haruka Kobayashi, Nanako Kameda, Nana Matsue","doi":"10.1080/1343943X.2022.2086590","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2086590","url":null,"abstract":"ABSTRACT Nitrogen (N) partitioning to grain affects productivity and grain quality in rice. The objectives of this study were to clarify the difference between the rice cultivars ‘Momiroman’ (japonica) and ‘Takanari’ (indica) in the relation between the amount of total N in aboveground parts per grain dry weight (TNA/GW) and grain N concentration (GNC), to identify quantitative trait loci (QTLs) associated with the coefficient characterizing this relation by using populations derived from a cross between Momiroman and Takanari, and to verify the effects of the detected QTLs by using near-isogenic lines (NILs). We used 156 F2 plants grown under high N in 2015 and 156 F3 lines grown under high or low N in 2016, and determined N concentrations and contents in grain and aboveground vegetative parts. We found a logarithmic relation between GNC and TNA/GW in Momiroman and Takanari. The regression coefficient (A) was higher in Takanari. Under each N condition, A was calculated for each population and QTL analysis was performed. QTLs for A were detected on chromosomes (Chrs.) 6 and 10 in all conditions; the Takanari alleles of both QTLs increased the value. NILs with the Takanari allele in each region had higher A than NILs with the Momiroman alleles. We conclude that the QTLs for A are associated with N partitioning to grain in rice. Abbreviations: GNA, amount of N in grain; GNC, grain N concentration; GW, grain dry weight; TNA, amount of N in aboveground parts Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46565115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daisuke Sasayama, Mayuko Niikawa, T. Hatanaka, H. Fukayama, T. Azuma
{"title":"Adaptive responses to flooding in wild rice species with various genomes other than AA","authors":"Daisuke Sasayama, Mayuko Niikawa, T. Hatanaka, H. Fukayama, T. Azuma","doi":"10.1080/1343943X.2022.2073896","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2073896","url":null,"abstract":"ABSTRACT In the present study, 15 accessions of wild rice species belonging to genome groups different from that of Oryza sativa were tested for their adaptive response to flooding at the seedling and mature stages. Under complete submergence at the seedling stage, reduced underwater shoot elongation and high survival rate after the recovery period were observed in the accessions of O. minuta as well as tetraploid O. punctata, O. eichingeri, O. officinalis, O. alta, O. grandiglumis, O. latifolia, and O. australiensis. This suggests that these species exhibit submergence tolerance at the seedling stage. During gradual submergence at mature stage, promoted internodal elongation was observed in the accessions of diploid and tetraploid O. punctata, O. alta, O. grandiglumis, O. latifolia, and O. brachyantha. This suggests that these species possess floating ability. Remarkably, two CCDD genome species, namely O. grandiglumis and O. latifolia, strongly displayed both submergence tolerance at the seedling stage and floating ability at mature stage, suggesting that these species are valuable genetic resources for improving rice adaptability to flooding. SUB1A and SNORKEL genes are known to confer submergence tolerance and floating ability to O. sativa, respectively. However, SUB1A, SNORKEL1, and SNORKEL2 genes were not detected in any of the wild rice accessions investigated in the present study. Our results suggest that adaptive responses to flooding in the investigated wild rice species can be achieved independently of the presence or absence of SUB1A and SNORKEL genes. GRAPHICAL ABSTRACT","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49097578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Yamane, Moena Nishikawa, Y. Hirooka, Y. Narita, Tsukasa Kobayashi, Misako Kakiuchi, K. Iwai, M. Iijima
{"title":"Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress","authors":"K. Yamane, Moena Nishikawa, Y. Hirooka, Y. Narita, Tsukasa Kobayashi, Misako Kakiuchi, K. Iwai, M. Iijima","doi":"10.1080/1343943X.2022.2064309","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2064309","url":null,"abstract":"ABSTRACT Coffea arabica, an economically important crop, accounts for most of the coffee consumed globally. Increasing temperature due to climate change can cause a decrease in productivity in many crops, including coffee plants. The maximum temperature at which damage is induced has been reported for many crops, but it remains unclear in coffee plants. Here, we investigated the effect of different temperatures and the physiological damage induced by heat stress using both leaf disks and intact plants of Coffea arabica ‘Typica’. In the experiment using intact plants, we observed leaf damage by a decrease in soil plant analysis development value, and an increase in electrolyte leakage after exposure to 45°C for 96 h, whereas no leaf damage was observed for 72 h. The leaf surface temperatures after exposure to 45°C for 72 and 96 h were 44.0 and 46.3°C, respectively. Thus, a tolerance threshold in leaves of C. arabica ‘Typica’ under heat stress are likely between 44.0 and 46.3°C. The activities of catalase (CAT) and superoxide dismutase (SOD) decreased at 45°C in both leaf disks and intact plants. The decrease in the activities of SOD and CAT under heat stress may be responsible for the increased levels of reactive oxygen species, such as O2 − and H2O2, and the resulting cellular damage. Our findings provide valuable insights into the physiological responses of Coffea arabica ‘Typica’ to heat stress, which may contribute to the breeding and screening of tolerant cultivars in the future. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42152813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ohsumi, H. Heinai, Masaki Okamura, M. Yoshimoto, T. Hosono
{"title":"Punched-top chamber for moderately raising air temperature during the ripening period in rice","authors":"A. Ohsumi, H. Heinai, Masaki Okamura, M. Yoshimoto, T. Hosono","doi":"10.1080/1343943X.2022.2062015","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2062015","url":null,"abstract":"ABSTRACT Rice growth at an elevated air temperature (T air) during the ripening period is often evaluated using a semi-closed chamber (SCC). However, the water vapor pressure deficit (VPD) and CO2 concentration inside SCCs get lower than at ambient air plot, and these changes affect panicle temperature and photosynthesis. We developed a punched-top chamber (PTC), that is, an SCC with numerous pores on the top, and compared meteorological environments inside the two chambers and of ambient air plot. When solar radiation was >200 W m-2, ΔT air (SCC – Ambient) was 3.1°C–5.3°C, and ΔT air (PTC – Ambient) was 2.2°C–3.7°C. Excessively high T air > 38°C were more frequent inside the SCC than the PTC. The changes in VPD and CO2 concentration inside the PTC were less pronounced compared with those of the SCC, and thus PTC can be a better treatment for safely assessing the direct effect of elevated T air. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41896314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimized nitrogen application increases rice yield by improving the quality of tillers","authors":"Wei Zhou, Fengjun Yan, Yong Chen, W. Ren","doi":"10.1080/1343943X.2022.2061538","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2061538","url":null,"abstract":"ABSTRACT The quantity and quality of tillers determine the yield of rice. In order to explore how optimized nitrogen fertilizer application (OFA) increases rice yield by affecting tiller growth, a pot experiment with three nitrogen treatments was performed on the basis of previous researches to investigate the growth and development of tillers. Results showed that under OFA, the emerging rate of secondary tillers and high leaf position tillers decreased, which increased with the number of primary tillers. The decrease of ineffective tillers increased the accumulation of biomass and nitrogen per tiller, which promoted the development of panicles. Compared with traditional nitrogen fertilizer application (TFA), the differentiated number of spikelets increased by 10.85%–21.70%, which led to the total number of filled spikelets increasing by 9.67%–18.95%, resulting in 9.6% increase in rice yield. Primary tillers, especially at the first, second, fifth, and sixth leaf positions, were the superior tillers in good quality, which made great contribution to rice yield and were significantly affected by nitrogen application. Making full use of the regulation effect of nitrogen on the quality of tillers will help to stabilize rice yield with less nitrogen input or increase rice yield without adding nitrogen input. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45397295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Nakao, M. Yoshino, K. Miyamoto, S. Yabuta, Rieko Kamioka, Keisuke Hatanaka, J. Sakagami
{"title":"Drought escape during the late growth stage through early recovery from initial drying stress by hydropriming of upland rice","authors":"Y. Nakao, M. Yoshino, K. Miyamoto, S. Yabuta, Rieko Kamioka, Keisuke Hatanaka, J. Sakagami","doi":"10.1080/1343943X.2022.2054830","DOIUrl":"https://doi.org/10.1080/1343943X.2022.2054830","url":null,"abstract":"ABSTRACT This study investigated the interactions between soil moisture conditions and seed priming on initial and late growth over 2 years (2017–2018) through field trials and container experiments with regulated soil moisture. Field trials were conducted on rainfed upland rice fields in Uganda, East Africa, where primed and control seeds were planted in triplicate and cultivated. In 2017, the percentage of first heading (head emergence) of hills was higher in priming treatments, and the time for 20% of the hills to achieve the first heading (H20) was significantly earlier than in controls. Additionally, grain ratio (number of fertile grains to sterile grains) and H20 were negatively correlated (P < 0.05). However, the difference in growth parameters between control and priming was not found in the case of 2018. The results suggested that priming reduces the growth period under certain conditions and improves drought escape. Therefore, we investigated the relationship between priming effects on initial growth under soil moisture treatments and subsequent development under waterlogged conditions. After transfer to waterlogged conditions, plants of the primed seeds initially grown in low soil moisture conditions recovered earlier than control plants. Our research concludes that the agronomical impact of hydropriming on upland rice prevents prolonged plant growth under drought by early recovery. Furthermore, it could decrease the yield loss caused by reduced rainfall in the late growth stage. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49421019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}