Physics Letters A最新文献

筛选
英文 中文
Kerr birefringent switching mechanism in core-shell nanowires transformed by stark anti-crossing 核壳纳米线中克尔双折射切换机制的鲜明反交叉转换
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-08 DOI: 10.1016/j.physleta.2024.130045
Yushuang Weng , Zhaotao Long , Keyin Li , Dongxu Zhao , Zhen Che , Zhishen Zhang , Yongyao Li
{"title":"Kerr birefringent switching mechanism in core-shell nanowires transformed by stark anti-crossing","authors":"Yushuang Weng ,&nbsp;Zhaotao Long ,&nbsp;Keyin Li ,&nbsp;Dongxu Zhao ,&nbsp;Zhen Che ,&nbsp;Zhishen Zhang ,&nbsp;Yongyao Li","doi":"10.1016/j.physleta.2024.130045","DOIUrl":"10.1016/j.physleta.2024.130045","url":null,"abstract":"<div><div>Stark anti-crossing (SAC) serves as a new approach to switch the Kerr birefringence effect of the off-centered core-shell square nanowires (OSN). The intensity of SAC induced by an electric field is inversely correlated with the degree of the core displacement from the center. To the best of our knowledge, it is the first demonstration that SAC is equipped with efficacy in suppressing Kerr birefringence of OSN by intensifying energy degeneracy and mitigating the parity symmetry distortion of wavefunction due to core displacement. Such a novel mechanism lies in the formation of two quasi-degenerate energy levels with nearly identical energies but opposite parity wavefunctions. It demonstrates a transform from polarization-dependent to -independent response of refractive index changes at mid-infrared wavelengths longer than 10 µm.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130045"},"PeriodicalIF":2.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DFT-based computational study on a highly and lead-free inorganic new fluoroperovskite of Mg3PF3 基于 DFT 的新型无机氟包晶 Mg3PF3 计算研究
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-07 DOI: 10.1016/j.physleta.2024.130027
Md. Ferdous Rahman , Md. Hafizur Rahman , Tanvir Al Galib , Ahsan Habib , Ahmad Irfan
{"title":"A DFT-based computational study on a highly and lead-free inorganic new fluoroperovskite of Mg3PF3","authors":"Md. Ferdous Rahman ,&nbsp;Md. Hafizur Rahman ,&nbsp;Tanvir Al Galib ,&nbsp;Ahsan Habib ,&nbsp;Ahmad Irfan","doi":"10.1016/j.physleta.2024.130027","DOIUrl":"10.1016/j.physleta.2024.130027","url":null,"abstract":"<div><div>Inorganic fluoroperovskite materials are increasingly important in solar technology due to their exceptional structural, optical, electronic, and mechanical properties. This study uses DFT calculations to investigate the properties of Mg<sub>3</sub>PF<sub>3</sub> fluoroperovskite. Our results show a crystal structure and lattice parameter of (<em>a</em> = 4.64 Å) which align with previous theoretical and experimental findings, confirming the accuracy of our calculations. Mechanical analysis reveals that Mg<sub>3</sub>PF<sub>3</sub> is naturally ductile, elastically anisotropic, and stable according to established criteria. The band structure and PDOS indicate that it is a semiconductor with direct bandgap of 3.88 eV at the Γ point, making it suitable for electronic applications. Electron charge density mapping suggests a predominantly ionic bonding nature. Optical property analysis shows significant dielectric constant peaks in the photon energy range favorable for solar cells. Overall, these findings position Mg<sub>3</sub>PF<sub>3</sub> as a promising candidate for solar cell technology, highlighting its potential for enhancing renewable energy solutions.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130027"},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model for restoring obstructed beam transmission in atmospheric turbulence based on BP neural network 基于 BP 神经网络的大气湍流中受阻光束传输恢复模型
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-07 DOI: 10.1016/j.physleta.2024.130030
Jinyu Xie , Jiancheng Zheng , Lu Bai
{"title":"Model for restoring obstructed beam transmission in atmospheric turbulence based on BP neural network","authors":"Jinyu Xie ,&nbsp;Jiancheng Zheng ,&nbsp;Lu Bai","doi":"10.1016/j.physleta.2024.130030","DOIUrl":"10.1016/j.physleta.2024.130030","url":null,"abstract":"<div><div>Atmospheric turbulence and obstacles can distort rays during transmission, resulting in significant wavefront distortion and loss of optical field information. This paper employs the phase screen method to simulate the transmission characteristics of a Gaussian plane wave in turbulent conditions, establishing an obstacle grid at the receiver to represent beam obstruction. A dataset of unobstructed transmissions is used to train a Backpropagation Neural Network, constructing neurons and connection weights. By scanning optical field data systematically, the model compensates for the obstructed portions of the optical field distribution. The results are compared to unobstructed transmissions, focusing on image similarity, and demonstrate the entire process from compensation to distortion correction. Simulation results indicate that the Backpropagation Neural Network effectively compensates for optical field information loss, showcasing strong performance within a certain time scale.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130030"},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of optical solitons and sensitivity analysis in fiber optics 光纤中的光孤子动力学和灵敏度分析
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-07 DOI: 10.1016/j.physleta.2024.130031
Nida Raees , Irfan Mahmood , Ejaz Hussain , Usman Younas , Hosam O. Elansary , Sohail Mumtaz
{"title":"Dynamics of optical solitons and sensitivity analysis in fiber optics","authors":"Nida Raees ,&nbsp;Irfan Mahmood ,&nbsp;Ejaz Hussain ,&nbsp;Usman Younas ,&nbsp;Hosam O. Elansary ,&nbsp;Sohail Mumtaz","doi":"10.1016/j.physleta.2024.130031","DOIUrl":"10.1016/j.physleta.2024.130031","url":null,"abstract":"<div><div>The nonlinear Schrödinger equation (NLSE) and its various forms have significant applications in the field of soliton theory. The Fokas-Lenells (FL) equation stands as a cornerstone in deepening our understanding of nonlinear wave dynamics within optical systems, particularly concerning the behavior of ultrashort pulses across different media. Its significance lies in providing a comprehensive framework to study and analyze complex phenomena, ultimately contributing to advancements in optical technology and applications. The FL equation is an integrable extension of the NLSE that provides a description of the nonlinear propagation of pulses in optical fiber. This paper seeks to discover optical soliton solutions for the FL equation by employing a modified sub-equation method. Additionally, the sensitivity analysis is described by using the various initial conditions. The main novelty of this paper lies in conducting a sensitivity analysis of the FL equation by examining the effects of various initial conditions, providing deeper insights into how these conditions influence the behavior of soliton solutions. For the physical behavior of the models, some solutions are graphically shown in 2<em>D</em>, 3<em>D</em>, and contour graphs by assigning specific values to the parameters under the provided situation at each solution. As a result, we discovered several new families of exact traveling wave solutions, such as bright solitons, dark solitons, and combined bright and dark solitons. This research opens numerous avenues for further exploration in the field of nonlinear wave dynamics and optical soliton theory. The discovery of exact soliton solutions for the FL equation through a modified sub-equation method paves the way for deeper investigations for newcomer researchers. The results of this study will contribute further to the field of mathematical physics, particularly in enhancing the understanding of nonlinear wave propagation and soliton theory in optical and other physical systems.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130031"},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conservation laws for a perturbed resonant nonlinear Schrödinger equation in quantum fluid dynamics and quantum optics 量子流体力学和量子光学中扰动共振非线性薛定谔方程的守恒定律
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-07 DOI: 10.1016/j.physleta.2024.130037
Nikolay A. Kudryashov , Daniil R. Nifontov , Anjan Biswas
{"title":"Conservation laws for a perturbed resonant nonlinear Schrödinger equation in quantum fluid dynamics and quantum optics","authors":"Nikolay A. Kudryashov ,&nbsp;Daniil R. Nifontov ,&nbsp;Anjan Biswas","doi":"10.1016/j.physleta.2024.130037","DOIUrl":"10.1016/j.physleta.2024.130037","url":null,"abstract":"<div><div>The current paper retrieves the conservation laws for the extended version of the resonant nonlinear Schrödinger's equation for description of physical processes in quantum fluid dynamics and quantum optics. The method of multipliers recovers three fundamental conservation laws. Analytical solutions of equation are found taking into account traveling wave reduction. The conserved quantities are subsequently computed from the soliton solution of the model equation that is derived in this work too.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130037"},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electronic properties of a single electron in the GaAs/Ga1−xAlxAs oblate spheroidal quantum dot under the finite confinement potential 有限约束势下 GaAs/Ga1-xAlxAs 扁球形量子点中单个电子的电子特性
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-06 DOI: 10.1016/j.physleta.2024.130035
Ahmad Mehramiz , Kaveh Pasandideh , Mahsa Alijabbari
{"title":"The electronic properties of a single electron in the GaAs/Ga1−xAlxAs oblate spheroidal quantum dot under the finite confinement potential","authors":"Ahmad Mehramiz ,&nbsp;Kaveh Pasandideh ,&nbsp;Mahsa Alijabbari","doi":"10.1016/j.physleta.2024.130035","DOIUrl":"10.1016/j.physleta.2024.130035","url":null,"abstract":"<div><div>Quantum Dots, due to their fully quantized electronic states, have contributed to considerable progress in modern science and technology. Here we calculate the wave functions and energy spectrum of an electron confined in an oblate spheroidal quantum dot under the finite barrier potential condition, allowing the tailoring of the various energy states for specific applications. By calculating the electron wave functions outside the dot, we found that an infinite barrier is not a valid approximation for analyzing the optical properties of the structure. The effect of various geometrical and electrical characteristics of the structure, including the eccentricity, effective volume, and the height of barrier potential, is investigated. Additionally, the findings are compared with those found with prolate spheroidal quantum dot. The findings are further validated by comparing them to the exact electron energy level in a spherical quantum under the infinite barrier approximation.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130035"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of CN-related optical transitions and non-radiative capture cross-section by biaxial strain in AlN 氮化铝中双轴应变对 CN 相关光学转变和非辐射俘获截面的调控
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-06 DOI: 10.1016/j.physleta.2024.130034
Qian-Ji Wang , Hai-Shan Zhang , Lin Shi , Yun-Hua Cheng , Jian Gong
{"title":"Regulation of CN-related optical transitions and non-radiative capture cross-section by biaxial strain in AlN","authors":"Qian-Ji Wang ,&nbsp;Hai-Shan Zhang ,&nbsp;Lin Shi ,&nbsp;Yun-Hua Cheng ,&nbsp;Jian Gong","doi":"10.1016/j.physleta.2024.130034","DOIUrl":"10.1016/j.physleta.2024.130034","url":null,"abstract":"<div><div>Carbon-related 4.7 eV absorption band and small in-plane strains in AlN may have some significant effects on its application in optoelectronic devices. Based on the accurate hybrid density functional calculation, we investigate the transition energy levels, photo-transition processes, and hole capture cross-sections of C<sub>N</sub> defect. We propose that the transition from −1 to 0 charge states of C<sub>N</sub> defect may be responsible for the 4.7 eV absorption band in AlN. In addition, the C<sub>N</sub> defect-related absorption and emission peaks are linearly dependent on the biaxial strain in the range of −3% to +3%, and the hole non-radiative capture rate by the C<sub>N</sub> center at the −3% biaxial strain is only 3.65% of that at the +3% biaxial strain. This work provides an effective approach for regulating the charge carrier capture ability of the defect center and improving device performance.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130034"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation on the performance of heterojunction solar cells with Cu2O as the hole transport layer and Cu2MoSnS4 as the absorption layer 以 Cu2O 为空穴传输层、Cu2MoSnS4 为吸收层的异质结太阳能电池性能的数值研究
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-06 DOI: 10.1016/j.physleta.2024.130029
WeiWei Xie , ChaoLing Du , YiHan Ding , XiaoYang Zhang , YangMao Luo , SiHao Xia , ShuiYan Cao
{"title":"Numerical investigation on the performance of heterojunction solar cells with Cu2O as the hole transport layer and Cu2MoSnS4 as the absorption layer","authors":"WeiWei Xie ,&nbsp;ChaoLing Du ,&nbsp;YiHan Ding ,&nbsp;XiaoYang Zhang ,&nbsp;YangMao Luo ,&nbsp;SiHao Xia ,&nbsp;ShuiYan Cao","doi":"10.1016/j.physleta.2024.130029","DOIUrl":"10.1016/j.physleta.2024.130029","url":null,"abstract":"<div><div>Cu<sub>2</sub>MoSnS<sub>4</sub> (CCTS) is well suited as the absorption layer for solar cell due to its high absorption coefficient, suitable optical bandgap, and good stability. In this study, a novel CCTS-based solar cell with the structure of FTO/ZnO:Al/Ag<sub>2</sub>S/CCTS/Cu<sub>2</sub>O/C was proposed by setting Cu<sub>2</sub>O as the hole transport layer (HTL) to boost the photovoltaic (PV) efficiency. A comparative numerical study of its PV performance with that of the reference counterpart was performed by employing the software SCAPS, which demonstrates its obvious advantage. It was also numerically optimized by tuning the geometry and optoelectronic parameters. The optimized power conversion efficiency (PCE) was revealed to reach 26.27 %, getting 135 % improvement compared with that of the reference counterpart. It demonstrates that the proposed CCTS heterojunction solar cell with Cu<sub>2</sub>O as the HTL boosts the efficiency of CCTS-based solar cells and provide new clues for future CCTS solar cell design and application.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130029"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the imaginarity of quantum states via Tsallis relative entropy 通过查里斯相对熵量化量子态的意象性
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-05 DOI: 10.1016/j.physleta.2024.130024
Jianwei Xu
{"title":"Quantifying the imaginarity of quantum states via Tsallis relative entropy","authors":"Jianwei Xu","doi":"10.1016/j.physleta.2024.130024","DOIUrl":"10.1016/j.physleta.2024.130024","url":null,"abstract":"<div><div>Imaginary numbers play a significant role in quantum mechanics. Recently, a rigorous resource theory for the imaginarity of quantum states were established, and several imaginarity measures were proposed. In this work, we propose a new imaginarity measure based on the Tsallis relative entropy. This imaginarity measure has explicit expression, and also, it is computable for bosonic Gaussian states.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130024"},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quadrupole oscillator as an integrable model 作为可积分模型的四极振荡器
IF 2.3 3区 物理与天体物理
Physics Letters A Pub Date : 2024-11-05 DOI: 10.1016/j.physleta.2024.130032
T. Iwai
{"title":"A quadrupole oscillator as an integrable model","authors":"T. Iwai","doi":"10.1016/j.physleta.2024.130032","DOIUrl":"10.1016/j.physleta.2024.130032","url":null,"abstract":"<div><div>A quadrupole oscillator is presented as an integrable model in the Born-Oppenheimer formalism with an electronic Hamiltonian being the quadrupole tensor. The electronic states of present concern are associated with a doubly degenerate positive eigenvalue of the electronic Hamiltonian, and accordingly the nuclear Hamiltonian takes a <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrix form. While the potential function for nuclear motion is proportional to <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the kinetic energy operator is rather complicated, containing coupling terms with a Berry connection through adiabatic approximation. The energy eigenvalues, which receive a modification by a Chern number, get closer to those for the 3D isotropic harmonic oscillator if the angular momentum quantum number becomes sufficiently large.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130032"},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信