Volume 13: Design, Reliability, Safety, and Risk最新文献

筛选
英文 中文
Finite Element Model Validation of the Hybrid-III Rail Safety (H3-RS) Anthropomorphic Test Device (ATD) Hybrid-III型铁路安全(H3-RS)拟人试验装置(ATD)有限元模型验证
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-87736
Shaun Eshraghi, K. Severson, D. Hynd, A. Perlman
{"title":"Finite Element Model Validation of the Hybrid-III Rail Safety (H3-RS) Anthropomorphic Test Device (ATD)","authors":"Shaun Eshraghi, K. Severson, D. Hynd, A. Perlman","doi":"10.1115/IMECE2018-87736","DOIUrl":"https://doi.org/10.1115/IMECE2018-87736","url":null,"abstract":"The Hybrid-III Rail Safety (H3-RS) anthropomorphic test device (ATD), also known as a crash test dummy, was developed by the Rail Safety and Standards Board (RSSB), DeltaRail (now Resonate Group Ltd.), and the Transport Research Laboratory (TRL) in the United Kingdom between 2002 and 2005 for passenger rail safety applications [1]. The H3-RS is a modification of the standard Hybrid-III 50th percentile male (H3-50M) ATD with additional features in the chest and abdomen to increase its biofidelity and eight sensors to measure deflection. The H3-RS features bilateral (left and right) deflection sensors in the upper and lower chest and in the upper and lower abdomen; whereas, the standard H3-50M only features a single unilateral (center) deflection sensor in the chest with no deflection sensors located in the abdomen.\u0000 Additional H3-RS research was performed by the Volpe National Transportation Systems Center (Volpe Center) under the direction of the U.S. Department of Transportation, Federal Railroad Administration (FRA) Office of Research, Development, and Technology. The Volpe Center contracted with TRL to conduct a series of dynamic pendulum impact tests [2]. The goal of testing the abdomen response of the H3-RS ATD was to develop data to refine an abdomen design that produces biofidelic and repeatable results under various impact conditions with respect to impactor geometry, vertical impact height, and velocity.\u0000 In this study, the abdominal response of the H3-RS finite element (FE) model that TRL developed is validated using the results from pendulum impact tests [2]. Results from the pendulum impact tests and corresponding H3-RS FE simulations are compared using the longitudinal relative deflection measurements from the internal sensors in the chest and abdomen as well as the longitudinal accelerometer readings from the impactor. The abdominal response of the H3-RS FE model correlated well with the physical ATD as the impactor geometry, vertical impact height, and velocity were changed. There were limitations with lumbar positioning of the H3-RS FE model as well as the material definition for the relaxation rate of the foam in the abdomen that can be improved in future work.\u0000 The main goal of validating the abdominal response of the dummy model is to enable its use in assessing injury potential in dynamic sled testing of crashworthy workstation tables, the results of which are presented in a companion paper [3]. The authors used the model of the H3-RS ATD to study the 8G sled test specified in the American Public Transportation Association (APTA) workstation table safety standard [4]. The 8G sled test is intended to simulate the longitudinal crash accleration in a severe train-to-train collision involving U.S. passenger equipment. Analyses of the dynamic sled test are useful for studying the sensitivity of the sled test to factors such as table height, table force-crush behavior, seat pitch, etc., which help to inform discussions on revisions ","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127565161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Automatic Basketball Rebound System 自动篮板球系统
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-86715
Thomas Smith, V. Nandikolla
{"title":"The Automatic Basketball Rebound System","authors":"Thomas Smith, V. Nandikolla","doi":"10.1115/IMECE2018-86715","DOIUrl":"https://doi.org/10.1115/IMECE2018-86715","url":null,"abstract":"In the sport of basketball, it is important to practice shooting the ball to develop the skill of making the shot in the basket at a high efficiency. Making shots at a high efficiency allows the player to succeed at a high level in the sport. The main focus of the paper describes the design and development of an automatic basketball rebound (ABR) system. The developed ABR provides a system that will launch the ball back to the player at any position on the court within a 50-foot radius. This is accomplished by a variable spring loaded launching mechanism that will compress a spring, depending on the players location, to generate the appropriate force required to launch the ball back to the player. The novel launching mechanism developed is mounted to a rotary table that ensures the launching mechanism is in the correct orientation with the player once the ball is launched. The player is outfitted with an inertial measurement unit to track their position using a method known as dead reckoning. This information is relayed back to a microcontroller that determines the system response. The ABR system is made from lightweight materials and is compact such that it is easy to move around compared to its predecessors.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"153 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115262356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks 工科学生风险评估与优先排序偏差研究的初步模型实验
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-87888
Jeremy M. Gernand
{"title":"A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks","authors":"Jeremy M. Gernand","doi":"10.1115/IMECE2018-87888","DOIUrl":"https://doi.org/10.1115/IMECE2018-87888","url":null,"abstract":"Engineering decisions that have the greatest effect on worker and public safety occur early in the design process. During these decisions, engineers rely on their experience and intuition to estimate the severity and likelihood of undesired future events like failures, equipment damage, injuries, or environmental harm. These initial estimates can then form the basis of investment of limited project resources in mitigating those risks. Behavioral economics suggests that most people make significant and predictable errors when considering high consequence, low probability events. These biases have not previously been studied quantitatively in the context of engineering decisions, however. This paper describes preliminary results from a set of computerized experiments with engineering students estimating, prioritizing, and making design decisions related to risk. The undergraduate students included in this experiment were more likely to underestimate than overestimate the risk of failure. They were also more optimistic of the effects of efforts to mitigate risk than the evidence suggested. These results suggest that considerably more effort is needed to understand the characteristics and qualities of these biases in risk estimation, and understand what kinds of intervention might best ameliorate these biases and enable engineers to more effectively identify and manage the risks of technology.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114232792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Optimization of Truck Front-Frame Under Multiple Load Cases 多工况下货车前车架结构优化
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-86293
Shuvodeep De, Karanpreet Singh, B. Alanbay, R. Kapania, Raymond Aguero
{"title":"Structural Optimization of Truck Front-Frame Under Multiple Load Cases","authors":"Shuvodeep De, Karanpreet Singh, B. Alanbay, R. Kapania, Raymond Aguero","doi":"10.1115/IMECE2018-86293","DOIUrl":"https://doi.org/10.1115/IMECE2018-86293","url":null,"abstract":"An optimization framework is developed to minimize structural weight of the front-frame of heavy-duty trucks while satisfying stress constraint. The shape of the frame is defined by a number of design parameters (which define the shape of the side-rail, position and width of the internal brackets, and width of the flanges). In addition, the thickness of the engine-mount, the side-rails, inner-brackets, radiator mount, shock absorber and cab-mount connector are also considered as design variables. Aluminum Alloy, 6013-T6 is chosen as the material and the maximum allowable stress is the yield stress (320 MPa). A quantity known as ‘Violation’ is defined as the ratio of area in the front-end module where stress constraint is violated to the total area of the frame is introduced to implement stress constraints. For optimization, the penalty method is used where the objective is to minimize the total weight while keeping the value of the ‘Violation’ parameter less than 0.1 %. The Particle Swarm Optimization Algorithm is implemented using parallel computation for optimizing the structure. Commercial FEA software MSC.PATRAN is used for creating the geometry and the mesh whereas MSC.NASTRAN is used to perform static analysis. Six design load conditions, each corresponding to a road condition are used for the problem.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131740668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Analysis of Reciprocating Seals in the Wet-Mate Electrical Connectors for Underwater Applications 水下用湿配合电连接器往复密封分析
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-86988
Han Quan, Yan Zhang, Chen Haiyang, Juekuan Yang, Yunfei Chen
{"title":"Analysis of Reciprocating Seals in the Wet-Mate Electrical Connectors for Underwater Applications","authors":"Han Quan, Yan Zhang, Chen Haiyang, Juekuan Yang, Yunfei Chen","doi":"10.1115/IMECE2018-86988","DOIUrl":"https://doi.org/10.1115/IMECE2018-86988","url":null,"abstract":"In order to complete the mating and demating operations of the electrical connectors for underwater applications in the deep water environment, the pressure-balanced oil-filled (PBOF) structures are designed to compensate the huge water pressure. This paper focuses on the sealing performance of three sealing systems used in connectors, including the O-ring seals, rectangular seals, and U-cup seals. A method coupled the finite element analysis and elastohy-drodynamic lubrication (EHL) numerical model is presented to describe the issue. Results show that the rectangular seals perform best in fluid leakage, and O-ring seals are better in reducing the friction force. The oil leakages of the seals increase with the speed while the seawater leakages remain roughly constant. And the oil leakages of all the seals are larger than the seawater leakage. Types of seal rings, fluid viscosity and operation speed of connector can all influence the sealing performance of wet-mate connectors.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124605018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Truss Design and Optimization Using Stress Analysis and NURBS Curves 基于应力分析和NURBS曲线的桁架设计与优化
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-87728
A. Caputi, M. Cohen, C. Rizzi, D. Russo
{"title":"Truss Design and Optimization Using Stress Analysis and NURBS Curves","authors":"A. Caputi, M. Cohen, C. Rizzi, D. Russo","doi":"10.1115/IMECE2018-87728","DOIUrl":"https://doi.org/10.1115/IMECE2018-87728","url":null,"abstract":"This paper presents a novel design methodology, which combines topology and shape optimization to define material distribution in the structural design of a truss. Firstly, in order to identify the best layout, the topology optimization process in the design domain is carried out by applying the BESO (Bidirectional Evolutionary Structural Optimization) method. In this approach, the low energy elements are eliminated from an initial mesh, and a new geometry is constructed. This new geometry consists of a set of elements with a higher elastic energy. This results in a new division of material providing different zones, some subjected to higher stress and others containing less elastic energy. Moreover, the elements of the final mesh are re-arranged and modified, considering the distribution of tension. This new arrangement is constructed by aligning and rotating the original mesh elements coherently to the principal directions. In the Shape Optimization stage, the resulting TO (Topology Optimization) geometry is refined. A process of replacing the tabular mesh is performed by rearranging the remaining elements. The vertices of the mesh are set as control polygon vertices and used as reference to define the NURBS (Non-Uniform Rational B-Spline) curves. This provides a parametric representation of the boundaries, outlining the high elastic energy zones. The final stage is the optimization of the continuous and analytically defined NURBS curve outlining the solid material domain. The Shape Optimization is carried out applying a gradient-based optimization method.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133415763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Empirically Determined Design Guideline for Rectangular Cross Section Nitinol Flexure Hinges With the Focus on Flexibility-Strength Trade-Off 基于柔强权衡的矩形截面镍钛诺柔性铰链经验确定设计准则
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-86551
Suat Coemert, M. Olmeda, J. Fuckner, C. Rehekampff, Sandra V. Brecht, Tim C. Lueth
{"title":"An Empirically Determined Design Guideline for Rectangular Cross Section Nitinol Flexure Hinges With the Focus on Flexibility-Strength Trade-Off","authors":"Suat Coemert, M. Olmeda, J. Fuckner, C. Rehekampff, Sandra V. Brecht, Tim C. Lueth","doi":"10.1115/IMECE2018-86551","DOIUrl":"https://doi.org/10.1115/IMECE2018-86551","url":null,"abstract":"In our group, we are developing flexure hinge based manipulators made of nitinol for minimally invasive surgery. On the one hand, sufficient flexibility is required from flexure hinges to be able to cover the surgical workspace. On the other hand, the bending amount of the flexure hinges has to be limited below the yielding point to ensure a safe operation. As a result of these considerations, it has to be questioned how much bending angle a nitinol flexure hinge with given geometric dimensions can provide without being subject to plastic deformation. Due to the nonlinearities resulting from large deflections and the material itself, the applicability of the suggested approaches in the literature regarding compliance modeling of flexure hinges is doubtful. Therefore, a series of experiments was conducted in order to characterize the rectangular cross section nitinol flexure hinges regarding the flexibility-strength trade-off. The nitinol flexure hinge samples were fabricated by wire electrical discharge machining in varying thicknesses while keeping the length constant and in varying lengths while keeping the thickness constant. The samples were loaded and unloaded incrementally until deflections beyond visible plastic deformation occured. Each pose in loaded and unloaded states was recorded by means of a digital microscope. The deflection angles yielding to permanent set values corresponding to 0.1% strain were measured and considered as elastic limit. A quasilinear correlation between maximum elastic deflection angle and length-to-thickness ratio was identified. Based on this correlation, a minimal model was determined to be a limit for a secure design. The proposed guideline was verified by additional measurements with additional samples of random dimensions and finite element analysis.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132493346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Motion Capture and Data Elaboration to Analyse Wheelchair Set-Up and Users’ Performance 动作捕捉和数据精化分析轮椅设置和用户的表现
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-87531
D. Regazzoni, A. Vitali, C. Rizzi, Filippo Colombo Zefinetti
{"title":"Motion Capture and Data Elaboration to Analyse Wheelchair Set-Up and Users’ Performance","authors":"D. Regazzoni, A. Vitali, C. Rizzi, Filippo Colombo Zefinetti","doi":"10.1115/IMECE2018-87531","DOIUrl":"https://doi.org/10.1115/IMECE2018-87531","url":null,"abstract":"Using a wheelchair can be a challenging task for people with reduced force and control of muscles of abdomen or lower back. Spinal cord injured (SCI) people are the majority of those who are spending most of the day on a wheelchair and a proper training and chair setup is mandatory to reach a good level of functionality and to avoid harms and side effects. In order to assess the complex motion of a person self-pushing a wheelchair, a motion capture (Mocap) system has been arranged and a group of SCI patients has been acquired in a hospital gym. The Mocap system uses three Microsoft Kinect RGB-D sensors and iPisoft to perform the recording of the 3D motion. The main goal of the research is to provide therapists with a quantitative method to define a preliminary configuration in an objective way once is given the user’s medical conditions and his/her way of using the wheelchair. Working side by side with physiotherapists, the main parameters to be evaluated (e.g. pushing angles) have been identified and algorithms have been identified to automatically extract them from the 3D digital avatar model data coming from the Mocap system. The performance of the patients is then analyzed taking into account the wheelchair setup (e.g. position and inclination of the seat and of the back). The influence of geometric parameters on patients’ motion is analyzed so that design guidelines for configuration can be found. The overall outcome is to maximize performance and minimize side effects and fatigue, providing users with a better experience on the wheelchair.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121904040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Accelerated Degradation Testing of Rigid Wet Cooling Media to Analyse the Impact of Calcium Scaling 硬质湿冷却介质加速降解试验分析钙结垢的影响
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-88508
H. Dakshinamurthy, Ashwin Siddarth, Abhishek Guhe, Rajesh Kasukurthy, James Hoverson, D. Agonafer
{"title":"Accelerated Degradation Testing of Rigid Wet Cooling Media to Analyse the Impact of Calcium Scaling","authors":"H. Dakshinamurthy, Ashwin Siddarth, Abhishek Guhe, Rajesh Kasukurthy, James Hoverson, D. Agonafer","doi":"10.1115/IMECE2018-88508","DOIUrl":"https://doi.org/10.1115/IMECE2018-88508","url":null,"abstract":"Rigid wet cooling media is a key component of direct and indirect evaporative cooling systems. Evaporation is the process of a substance in a liquid state changing to a gaseous state. When water evaporates only water molecules get evaporated and the other chemicals in the water are left behind on the surface as residue. Many studies have been conducted on how the change in air flow velocity, media depth, porosity and water distribution affect performance of the cooling system. The operational efficiency of the cooling media varies over its life cycle and depends primarily on temperature and speed of inlet air, water distribution system, type of pad and dimension of the pad.\u0000 Although evaporative cooling when implemented with air-side economization enables efficiency gains, a trade-off between the system maintenance and its operational efficiency exists. In this study, the primary objective is to determine how calcium scale affects the overall performance of the cooling pad and the water system. Areas of the pad that are not wetted effectively allow air to pass through without being cooled and the edges between wetted and dry surface establish sites for scale formation. An Accelerated Degradation Testing (ADT) by rapid wetting and drying on the media pads at elevated levels of calcium is designed and conducted on the cellulose wet cooling media pad. This research focuses on monitoring the degradation that occurs over its usage and establish a key maintenance parameter for water used in media pad.\u0000 As a novel study, preliminary tests were mandatory because there were no established standards for media pad degradation testing. Sump water conductivity is identified as the key maintenance parameter for monitoring sump replenishing and draining cycles which will result in reduced water usage. The average water conductivity in the sump during wetting cycles increases monotonically when ADT was performed on a new media pad. An empirical relationship between sump water conductivity and number of wetting cycles is proposed. This information will be very helpful for the manufacturers to guide their customers for maintenance of the media pad and sump water drain cycles.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127105609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Algorithm for Similar 3D Model Difference Examination Using Geometric Matching 基于几何匹配的相似三维模型差分检测算法
Volume 13: Design, Reliability, Safety, and Risk Pub Date : 2018-11-09 DOI: 10.1115/IMECE2018-86996
Yue Yin, Lianshui Guo
{"title":"An Algorithm for Similar 3D Model Difference Examination Using Geometric Matching","authors":"Yue Yin, Lianshui Guo","doi":"10.1115/IMECE2018-86996","DOIUrl":"https://doi.org/10.1115/IMECE2018-86996","url":null,"abstract":"In this paper, a new algorithm for similar 3D CAD model difference examination based on geometric matching is presented. Firstly, using the boundary representation (B-rep) method, the two 3D models are decomposed into two sets of surfaces, each with an attributed adjacency graph (AAG) which is established using adjacency relationship of corresponding surfaces. The vertices of the AAG are set as the geometric information about surfaces (i.e. surface type, area). The edges of the AAG present the adjacency between surfaces, and the attribute information (i.e. the type and length of edges, the angle between two adjacent surfaces) is also stored in the AAG. Secondly, the surface similarity between two models is calculated according to their types, areas, composition edges and topological relationships. At the same time, the similarity matrix which stores the surface similarity coefficients is generated to find the geometric and topological optimal matching surfaces. Then, in the AAG, with the corresponding vertices of the optimal matching surface pair as the center, the remaining surfaces of two models are quickly and optimally matched according to the topological connections and similarity coefficients while the unmatchable ones are defined as added or deleted surfaces. Finally, differences between the two models are evaluated by analyzing and comparing the geometric attribute information about the matched surfaces.\u0000 In order to validate the effectiveness and feasibility of the proposed algorithm, a software prototype for similar model difference examination has been developed. The effectiveness and feasibility of the algorithm have been verified by engineering applications through the industrial needs. The results show that this algorithm can effectively compare the differences among different design iterations and demonstrate its potentials for a wide range of engineering design iterations examination problems.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127268915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信