{"title":"G-Jitter Effects on Chaotic Convection in a Rotating Fluid Layer","authors":"P. Kiran","doi":"10.5772/intechopen.90846","DOIUrl":"https://doi.org/10.5772/intechopen.90846","url":null,"abstract":"The effect of gravity modulation and rotation on chaotic convection is investigated. A system of differential equation like Lorenz model has been obtained using the Galerkin-truncated Fourier series approximation. The nonlinear nature of the problem, i.e., chaotic convection, is investigated in a rotating fluid layer in the presence of g-jitter. The NDSolve Mathematica 2017 is employed to obtain the numerical solutions of Lorenz system of equations. It is found that there is a proportional relation between Taylor number and the scaled Rayleigh number R in the presence of modulation. This means that chaotic convection can be delayed (for increasing value of R) or advanced with suitable adjustments of Taylor number and amplitude and frequency of gravity modulation. Further, heat transfer results are obtained in terms of finite amplitude. Finally, we conclude that the transition from steady convection to chaos depends on the values of Taylor number and g-jitter parameter.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127891321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Morphological, Electrical and Optical behaviour of Amorphous Chalcogenide Semiconductor","authors":"Mohsin Ganaie, M. Zulfequar","doi":"10.5772/intechopen.90512","DOIUrl":"https://doi.org/10.5772/intechopen.90512","url":null,"abstract":"Amorphous chalcogenide semiconductor plays a key role in search for novel func-tional materials with excellent optical and electrical properties. The science of chalcogenide semiconductor (CS) show broad spectrum of soluble alloy and a wider band gap device that access the optimal energy bandgap. The electronic properties of these alloys can be tuned by controlling the proportion of (S, Se, Te). The chalcogenide semiconducting (CS) alloys are promising candidates because of low band gap (1.0–1.6 eV) and high extinction coefficient in the visible region of solar spectrum. The band structure of amorphous semiconductor governed the transport properties and evaluates various factors such as Tauc gap, defect states, mobility edges. In the extended and localized state of amorphous semiconductor an electron goes various transition, absorption/ emission, transport which is due to drift and diffusion under DC electric fields. CS, including sulfides, selenides, and tellurides, have been broadly utilized in variety of energy conversion and storage devices for example, solar cells, fuel cells, light-emitting diodes, IR detector, Li/Na-ion batteries, supercapacitors, thermoelectric devices, etc. Here, we report various morphological electrical, structural, and optical properties of InSeS thin films prepared by Melt Quenching thermal evaporation technique.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115233284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advancement on the Excitonic and Biexcitonic Properties of Low-Dimensional Semiconductors","authors":"A. Armǎşelu","doi":"10.5772/intechopen.90147","DOIUrl":"https://doi.org/10.5772/intechopen.90147","url":null,"abstract":"Knowing excitonic and biexcitonic properties of low-dimensional semiconductors systems is extremely important for the discovery of new physical effects and for the development of novel optoelectronics applications. This review work furnishes an interdisciplinary analysis of the fundamental features of excitons and biexcitons in two-dimensional semiconductor structures, one-dimensional semiconductor structures, and zero-dimensional (0D) semiconductor structures. There is a focus on spectral and dynamical properties of excitons and biexcitons in quantum dots (QDs). A study of the recent advances in the field is given, emphasizing the latest theoretical results and latest experimental methods for probing exciton and biexciton dynamics. This review presents an outlook on future applications of engineered multiexcitonic states including the photovoltaics, lasing, and the utilization of QDs in quantum technologies.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116862163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Excitons in Two-Dimensional Materials","authors":"Xiaoyang Zheng, Xian Zhang","doi":"10.5772/intechopen.90042","DOIUrl":"https://doi.org/10.5772/intechopen.90042","url":null,"abstract":"Because of the reduced dielectric screening and enhanced Coulomb interactions, two-dimensional (2D) materials like phosphorene and transition metal dichalcogenides (TMDs) exhibit strong excitonic effects, resulting in fascinating many-particle phenomena covering both intralayer and interlayer excitons. Their intrinsic bandgaps and strong excitonic emissions allow the possibility to tune the inherent optical, electrical, and optoelectronic properties of 2D materials via a variety of external stimuli, making them potential candidates for novel optoelectronic applications. In this review, we summarize exciton physics and devices in 2D semiconductors and insulators, especially in phosphorene, TMDs, and their van der Waals heterostructures (vdWHs). In the first part, we discuss the remarkably versatile excitonic landscape, including bright and dark excitons, trions, biexcitons, and interlayer excitons. In the second part, we examine common control methods to tune excitonic effects via electrical, magnetic, optical, and mechanical means. In the next stage, we provide recent advances on the optoelectronic device applications, such as electroluminescent devices, photovoltaic solar cells, and photodetectors. We conclude with a brief discussion on their potential to exploit vdWHs towards unique exciton physics and devices.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130827628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Compact Source of Terahertz Radiation Based on an Open Corrugated Waveguide","authors":"L. Shchurova, V. Namiot","doi":"10.5772/intechopen.89692","DOIUrl":"https://doi.org/10.5772/intechopen.89692","url":null,"abstract":"We show that it is possible to produce terahertz wave generation in an open waveguide, which includes a multilayer dielectric plate. The plate consists of two dielectric layers with a corrugated interface. Near the interface, there is a thin semiconductor layer (quantum well), which is an electron-conducting channel. The generation and amplification of terahertz waves occur due to the efficient energy exchange between electrons, drifting in the quantum well, and the electromagnetic wave of the waveguide. We calculate the inhomogeneous electric fields induced near the corrugated dielectric interface by electric field of fundamental mode in the open waveguide. We formulate hydrodynamic equations and obtain analytical solutions for density waves of electrons interacting with the inhomogeneous electric field of the corrugation. According to numerical estimates, for a structure with a plate of quartz and sapphire layers and silicon-conducting channel, it is possible to generate electromagnetic waves with an output power of 25 mW at a frequency of 1 THz.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132288189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gülsüm Ersü, Yenal Gokpek, M. Can, C. Zafer, S. Demic
{"title":"Applications of Graphene Modified by Self-Assembled Monolayers","authors":"Gülsüm Ersü, Yenal Gokpek, M. Can, C. Zafer, S. Demic","doi":"10.5772/INTECHOPEN.88738","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88738","url":null,"abstract":"Self-assembled monolayers (SAMs) are well-oriented molecular structures that are formed by the adsorption of an active site of a surfactant onto a substrate’s surface. Aromatic SAMs were used to modify anode/hole transport layer interface in order to achieve preferable barrier alignment and charge carrier injection from anode to an organic-based thin film material. Other functions of SAMs include current blocking layers or moisture penetration blocking layers, dipolar surface layers for enhanced charge injection, and modification of work function of a material such as graphene acting as a spacer to physically separate and electrically decouple it from the substrate. Additionally, SAM modification of graphene leads to its electronic passivation at layers’ edges, elimination of defects, and enhanced adhesion and stability. The surface modification with molecules capable of forming SAM is a fast, simple, low-cost, and effective technique for the development of novel materials especially for the production of electronic devices. The ability to modify its properties by SAM technique has opened up a wide range of applications in electronic and optoelectronic devices.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129212138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Indenter Shape Dependent Dislocation Actives and Stress Distributions of Single Crystal Nickel during Nanoindentation: A Molecular Dynamics Simulation","authors":"Wenping Wu, Yun-li Li, Zhennan Zhang","doi":"10.5772/intechopen.89111","DOIUrl":"https://doi.org/10.5772/intechopen.89111","url":null,"abstract":"The influences of indenter shape on dislocation actives and stress distributions during nanoindentation were studied by using molecular dynamics (MD) simulation. The load-displacement curves, indentation-induced stress fields, and dislocation activities were analyzed by using rectangular, spherical, and Berkovich indenters on single crystal nickel. For the rectangular and spherical indenters, the load-displacement curves have a linear dependence, but the elastic stage produced by the spherical indenter does not last longer than that produced by the rectangular indenter. For a Berkovich indenter, there is almost no linear elastic regime, and an amorphous region appears directly below the indenter tip, which is related to the extremely singular stress field around the indenter tip. In three indenters cases, the prismatic dislocation loops are observed on the {111} planes, and there is a sudden increase in stress near the indenter for the Berkovich indenter. The stress distributions are smooth with no sudden irregularities at low-indentation depths; and the stress increases and a sudden irregularity appears with the increasing indentation depths for the rectangular and spherical indenters. Moreover, the rectangular indenter has the most complex dislocation activities and the spherical indenter is next, while very few dislocations occur in the Berkovich indenter case.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114837728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Superconducting Josephson-Based Metamaterials for Quantum-Limited Parametric Amplification: A Review","authors":"L. Fasolo, A. Greco, E. Enrico","doi":"10.5772/INTECHOPEN.89305","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.89305","url":null,"abstract":"In the last few years, several groups have proposed and developed their own platforms demonstrating quantum-limited linear parametric amplification, with evident applications in quantum information and computation, electrical and optical metrology, radio astronomy and basic physics concerning axion detection. Here we propose a short review on the physics behind parametric amplification via metamaterials composed by coplanar wave-guides embedding several Josephson junctions. We present and compare different schemes that exploit the nonlinearity of the Josephson current-phase relation to mix the so-called signal, idler and pump tones. The chapter then presents and compares three different theoretical models, developed in the last few years, to predict the dynamics of these nonlinear systems in the particular case of a 4-Wave Mixing process and under the degenerate undepleted pump assumption. We will demonstrate that, under the same assumption, all the results are comparable in terms of amplification of the output fields.","PeriodicalId":197182,"journal":{"name":"Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133682578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}