{"title":"DMS-yolov8 A gesture recognition algorithm based on improved yolov81","authors":"Huawei Zhan, Chengju Han, Junjie Li, Gaoyong Wei","doi":"10.3233/jifs-238629","DOIUrl":"https://doi.org/10.3233/jifs-238629","url":null,"abstract":"Aiming at the problems of slow speed and low accuracy of traditional neural network systems for real-time gesture recognition in complex backgrounds., this paper proposes DMS-yolov8-a gesture recognition method to improve yolov8. This algorithm replaces the Bottleneck convolution module in the backbone network of yolov8 with variable row convolution DCNV2, and increases the feature convolution range without increasing the computation amount through a more flexible feeling field. in addition, the self-developed MPCA attention module is added after the feature output layer of the backbone layer, which improves the problem of recognizing the accuracy of difference gestures in complex backgrounds by effectively combining the feature information of the contextual framework, taking into account the multi-scale problem of the gestures in the image, this paper introduces the SPPFCSPS module, which realizes multi-feature fusion and improves real-time accuracy of detection. Finally, the model proposed in this paper is compared with other models, and the proposed DMS-yolov8 model achieves good results on both publicly available datasets and homemade datasets, with the average accuracy up to 97.4% and the average mAP value up to 96.3%, The improvements proposed in this paper are effectively validated.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140714098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abinaya Pandiyarajan, S. Jagatheesaperumal, Manonmani Thayanithi
{"title":"Secure and fine-grained access control of electronic health record using SAPCP-ABE technique in cloud","authors":"Abinaya Pandiyarajan, S. Jagatheesaperumal, Manonmani Thayanithi","doi":"10.3233/jifs-240341","DOIUrl":"https://doi.org/10.3233/jifs-240341","url":null,"abstract":"This study explores how Electronic Health Records (EHR) might be transformed in the context of the rapid improvements in cloud computing and IoT technology. But worries about sensitive data security and access management when it moves to large cloud provider networks surface. Even if they are secure, traditional encryption techniques sometimes lack the granularity needed for effective data protection. We suggest the Secure Access Policy – Ciphertext Policy – Attribute-based Encryption (SAPCP-ABE) algorithm as a solution to this problem. This method ensures that only authorized users may access the necessary data while facilitating fine-grained encrypted data exchange. The three main phases of SAPCP-ABE are retrieval and decoding, where the system verifies users’ access restrictions, secure outsourcing that prioritizes critical attributes, and an authenticity phase for early authentication. Performance tests show that SAPCP-ABE is a better scheme than earlier ones, with faster encryption and decryption speeds of 5 and 5.1 seconds for 512-bit keys, respectively. Security studies, numerical comparisons, and implementation outcomes demonstrate our suggested approach’s efficacy, efficiency, and scalability.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140715361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TiTDet: A tiny text detector with scale-sensitive loss and effective fusion factor","authors":"Guangcun Wei, Jihua Fu, Zhifei Pan, Qingge Fang, Zhi Zhang","doi":"10.3233/jifs-236317","DOIUrl":"https://doi.org/10.3233/jifs-236317","url":null,"abstract":"The text in natural scenes is often smaller compared to artificially designed text. Due to the small proportion of pixels, low resolution, less semantic information, and susceptibility to complex scenes, tiny text detection often results in many missed detections. To address this issue, this paper draws inspiration from small object detection methods and proposes TiTDet, a detection algorithm more suitable for tiny text. Due to the small proportion of pixels, low resolution, less semantic information, and susceptibility to complex scenes, tiny text detection often results in many missed detections. To address this issue, this paper draws inspiration from small object detection methods and proposes TiTDet, a detection algorithm more suitable for tiny text. Firstly, this paper incorporates a context extraction module and an attention-guided module. These modules guide contextual information learning through a self attention mechanism, while eliminating the possible negative impact caused by redundant information. Regarding multi-scale feature fusion, this paper proposes a fine-grained effective fusion factor, making the fusion process emphasize small object learning more and highlight the feature expression of tiny texts. In terms of post-processing, this paper proposes a differentiable binarization module, incorporating the binarization process into model training. Leveraging the implicit information in the data to drive model improvement can enhance the post-processing effect. Lastly, this paper proposes a scale-sensitive loss, which can handle tiny texts more fairly, fully considering the positional relationship between the predicted and real regions, and better guiding the model training. This paper proves that TiTDet exhibits high sensitivity and accuracy in detecting tiny texts, achieving an 86.0% F1-score on ICDAR2015. The paper also compares the superiority of the method on CTW1500 and Total-Text.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140717822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IABC: A neural integral distinguisher for AND-RX Ciphers","authors":"Ying Huang, Lang Li, Di Li, Yongchao Li","doi":"10.3233/jifs-238122","DOIUrl":"https://doi.org/10.3233/jifs-238122","url":null,"abstract":"AND-Rotation-XOR (AND-RX) ciphers are known for its unique round function and excellent implementation performance. As a result, AND-RX ciphers are well suited for protecting sensitive information on resource-constrained devices. AND-RX ciphers need to be passed by rigorous cryptanalysis methods before practice. Integral cryptanalysis is one of the important cryptanalysis methods. MILP-based automated model is constructed to solve the integral cryptanalysis of AND-RX ciphers. The automated model usually consumes a long time when the block length and the number of round function components are large. In this paper, we design a neural distinguisher named IABC model for fast and efficient integral cryptanalysis. The IABC model learns to distinguish between ciphertext multisets to construct an integral distinguisher for AND-RX cipher, which ciphertext multisets from plaintext or random plaintexts. The IABC model is used for SIMON, SIMECK and SAND ciphers, which validates the neural distinguisher for AND-RX ciphers. The experimental results show that the IABC model is capable of expanding the number of rounds of integral distinguishers for AND-RX ciphers with certain accuracy. Therefore, IABC model can be effectively used for integral cryptanalysis of AND-RX ciphers. In addition, we discover that a larger number of active bits in the plaintext multiset results in a more accurate IABC model.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"8 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140716316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced intelligent optimization for electric vehicle charging stations integrated with photovoltaic system and battery storage in commercial buildings","authors":"Hongjun Li, Jinlong Zhang","doi":"10.3233/jifs-241032","DOIUrl":"https://doi.org/10.3233/jifs-241032","url":null,"abstract":"This paper presents a sophisticated four-stage optimization and intelligent control algorithm tailored for two-way electric vehicle charging (EVC) stations integrated with advanced photovoltaic systems and fixed battery energy storage in commercial buildings. The primary objective is to minimize operating costs while prioritizing customer satisfaction within a dynamic and uncertain energy landscape. Our algorithm optimizes the scheduled charging and discharging of electric vehicles (EVs), local battery storage (BS) units, grid power supply, and deferred loads to balance instantaneous supply and demand. The first stage focuses on developing optimal energy management plans for the day ahead, considering factors such as projected energy production, anticipated EVC demand, and building energy consumption patterns. Building on this foundation, the second stage introduces multilayer EV charging price structures and optimizes participation rewards for discharging, dynamically addressing EV charging patterns and price sensitivities. Approaching the commissioning timeline, the third stage refines energy management plans for the upcoming hours using real-time data and forecasts, adapting to evolving conditions for optimal resource allocation. The final stage involves real-time control and the implementation of optimized programs, dynamically adjusting charge/discharge processes, grid interactions, and load deferral to maintain supply-demand balance and minimize operating costs. Our algorithm enhances system resilience in unpredictable conditions, providing compelling incentives for active EV user participation. Coordinating the integrated system efficiently, including the commercial building’s energy load, ensures reliable service to customers while reducing costs. Extensive case studies and a comparative analysis validate the algorithm’s efficiency in significantly reducing operating costs and enhancing resilience to uncertainty. The paper concludes by highlighting the algorithm’s pioneering role in intelligent EV charging station (CHS) management, offering a cost-effective, customer-oriented, and dynamic energy control strategy for advancing global energy practices.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"2015 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140718628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. H. J. Haennah, C. S. Christopher, G. R. G. King
{"title":"Combined Unet and CNN image classification model for COVID disease detection using CXR/CT imaging","authors":"J. H. J. Haennah, C. S. Christopher, G. R. G. King","doi":"10.3233/jifs-230523","DOIUrl":"https://doi.org/10.3233/jifs-230523","url":null,"abstract":"Accurate SARS-CoV-2 screening is made possible by automated Computer-Aided Diagnosis (CAD) which reduces the stress on healthcare systems. Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious, the transition chain can be broken through an early diagnosis by clinical knowledge and Artificial Intelligence (AI). Manual findings are time and labor-intensive. Even if Reverse Transcription-Polymerase Chain Reaction (RT-PCR) delivers quick findings, Chest X-ray (CXR) imaging is still a more trustworthy tool for disease classification and assessment. Several studies have been conducted using Deep Learning (DL) algorithms for COVID-19 detection. One of the biggest challenges in modernizing healthcare is extracting useful data from high-dimensional, heterogeneous, and complex biological data. Intending to introduce an automated COVID-19 diagnosis model, this paper develops a proficient optimization model that enhances the classification performance with better accuracy. The input images are initially pre-processed with an image filtering approach for noise removal and data augmentation to extend the dataset. Secondly, the images are segmented via U-Net and are given to classification using the Fused U-Net Convolutional Neural Network (FUCNN) model. Here, the performance of U-Net is enhanced through the modified Moth Flame Optimization (MFO) algorithm named Chaotic System-based MFO (CSMFO) by optimizing the weights of U-Net. The significance of the implemented model is confirmed over a comparative evaluation with the state-of-the-art models. Specifically, the proposed CSMFO-FUCNN attained 98.45% of accuracy, 98.63% of sensitivity, 98.98% of specificity, and 98.98% of precision.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"592 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140719098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on pedestrian object detection algorithm in urban road scenes based on improved YOLOv5","authors":"Zhaohui Liu, Xiao Wang","doi":"10.3233/jifs-240537","DOIUrl":"https://doi.org/10.3233/jifs-240537","url":null,"abstract":"Pedestrians have random distribution and dynamic characteristics. Aiming to this problem, this paper proposes a pedestrian object detection method based on improved YOLOv5 in urban road scenes. Firstly, the last C3 module was replaced in the Backbone with the SE attention mechanism to enhance the network’s extraction of pedestrian object features and improve the detection accuracy of small-scale pedestrians. Secondly, the EIOU loss function was introduced to optimize the object detection performance of the detection network. To validate the effectiveness of the algorithm, experiments were conducted on a dataset composed of filtered Caltech pedestrian detection data and images taken by ourselves. The experiments showed that the improved algorithm has P-value, R-value, and mAP of 98.4%, 95.5%, and 98%, respectively. Compared to the YOLOv5 model, it has increased P-value by 1.4%, R-value by 2.7%, and mAP by 1.3%. The improved algorithm also boosts the detection speed. The detection speed is 0.8 ms faster than the YOLOv5 model. It is also faster than other mainstream algorithms including Faster R-CNN and SSD. The improved algorithm enhances the effectiveness of pedestrian detection significantly and has important application value.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"715 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140718910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency domain model-augmented feature space transferable attack","authors":"Jing Shi, Xiao-Lin Zhang, Yong-Ping Wang, Rui-Chun Gu, En-Hui Xu","doi":"10.3233/jifs-234156","DOIUrl":"https://doi.org/10.3233/jifs-234156","url":null,"abstract":"Deep neural networks (DNNs) are susceptible to adversarial attacks, and one important factor is that adversarial samples are transferable, i.e., adversarial samples generated by a particular network may deceive other black-box models. However, existing transferable adversarial attacks tend to modify the input features of images directly without selection to reduce the prediction accuracy in the alternative model, which would enable the adversarial samples to fall into the model’s local optimum. Alternative models differ significantly from the victim model in most cases, and while simultaneously attacking multiple models may improve transferability, gathering numerous different models is more challenging and expensive. We simulate various models using frequency domain transformation to close the gap between the source and victim models and improve transferability. At the same time, we destroy important intermediate layer features that influence the decision of the model in the feature space. Additionally, smoothing loss is introduced to remove high-frequency perturbations. Extensive experiments demonstrate that our FM-FSTA attack generates more well-hidden and transferable adversarial samples, and achieves a high deception rate even when attacking adversarially trained models. Compared to other methods, our FM-FSTA improved attack success rate under different defense mechanisms, which reveals the potential threats of current robust models.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"11 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140720199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent learners distraction and drowsiness prediction through EEG signal and iris angel position with brain vision algorithm","authors":"S. Sageengrana, S. Selvakumar","doi":"10.3233/jifs-237016","DOIUrl":"https://doi.org/10.3233/jifs-237016","url":null,"abstract":"Distraction and fatigue are serious issues in online learning, and they directly impact educational outcomes. To achieve excellent academic achievement, students need to focus on their studies without being distracted or fatigued. Learners frequently overlook crucial information, directions, and concepts while they are passive and sleepy. They tend to miss important content, instructions, and concepts. Iris Angle Position (IAP) and electroencephalography (EEG) were used in this model to identify the behaviour of learners. Specifically, a Deep Convolutional Neural Network (DCNN) is constructed to extract IAP in order to accurately capture the learner’s facial area. EEG signals are effectively handled and sorted using deep reinforcement learning (DRL). The learners’ facial landmarks are retrieved from a frame using the dlib toolbox. Only eye landmark points from face landmarks alone are focused on in order to determine the learner’s behaviour. When the learners EEG signals and Iris positions are monitored simultaneously, it’s helpful to identify the learner’s fatigue state (LFS) and the learner’s distraction state (LDS). The Brain Vision Algorithm (BVA) uses iris position and minimal facial landmarks, along with brain activity, to properly identify the learner’s level of distraction and exhaustion. When a student is detected as being preoccupied or sleepy, an alert goes off automatically, and the educator gets performance feedback. Iris position data and brain-computer interface-based EEG signal values are utilised to identify distraction and sleepiness. Comparative tests have demonstrated that this innovative method offers fast and high-accuracy student activity detection in virtual learning settings. Applying the suggested approach to different existing classifiers yields an F-Score of 91.92%, a recall of 93.87%, and a precision of 92.37% . The results showed that the detection rates for both distracted and sleepy phases were higher than those attained with other currently used techniques.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"93 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140724746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hosoya polynomial and wiener index of Abid-Waheed graph (AW)a8 and (AW)a10","authors":"A. Meenakshi, M. Bramila","doi":"10.3233/jifs-236051","DOIUrl":"https://doi.org/10.3233/jifs-236051","url":null,"abstract":"Molecular structures are characterised by the Hosoya polynomial and Wiener index, ideas from mathematical chemistry and graph theory. The graph representation of a chemical compound that has atoms as vertices and chemical bonds as edges is called a molecular graph, and the Hosoya polynomial is a polynomial related to this graph. As a graph attribute that remains unchanged under graph isomorphism, the Hosoya polynomial is known as a graph invariant. It offers details regarding the quantity of distinct non-empty subgraphs within a specified graph. A topological metric called the Wiener index is employed to measure the branching complexity and size of a molecular graph. For every pair of vertices in a molecular network, the Wiener index is the total of those distances. In this paper, discussed the Hosoya polynomial, Wiener index and Hyper-Wiener index of the Abid-Waheed graphs (AW)a8 and (AW)a10. This graph is similar to Jahangir’s graph. Further, we have extended the research work on the applications of the described graphs.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"10 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140726820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}