The Art of Proving Binomial Identities最新文献

筛选
英文 中文
Probability 概率
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-5
Michael Z. Spivey
{"title":"Probability","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-5","DOIUrl":"https://doi.org/10.1201/9781351215824-5","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131369860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic Techniques 基本技术
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-2
Michael Z. Spivey
{"title":"Basic Techniques","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-2","DOIUrl":"https://doi.org/10.1201/9781351215824-2","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116281182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculus 微积分
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.2174/9781681087115118010011
Michael Z. Spivey
{"title":"Calculus","authors":"Michael Z. Spivey","doi":"10.2174/9781681087115118010011","DOIUrl":"https://doi.org/10.2174/9781681087115118010011","url":null,"abstract":"The values xi are thus all equal at an extrema. The constraint equation tells us that xi = 1/n, from which we deduce the desired result. This extrema corresponds to a maximum because the continuous function h must achieve both its maximum and minimum value on the compact set [0, 1] and we have already eliminated the minimum by introducing the restriction that the xi are nonzero. (b) Use part (a) to prove, for any n positive numbers ai, i = 1, . . . , n, that","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"359 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123551688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Summation 机械总和
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-10
Michael Z. Spivey
{"title":"Mechanical Summation","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-10","DOIUrl":"https://doi.org/10.1201/9781351215824-10","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123898477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrence Relations and Finite Differences 递归关系与有限差分
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-7
Michael Z. Spivey
{"title":"Recurrence Relations and Finite Differences","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-7","DOIUrl":"https://doi.org/10.1201/9781351215824-7","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131889170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing the Binomial Coefficients 引入二项式系数
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-1
Michael Z. Spivey
{"title":"Introducing the Binomial Coefficients","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-1","DOIUrl":"https://doi.org/10.1201/9781351215824-1","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"17 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122930205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Functions 生成函数
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-6
Michael Z. Spivey
{"title":"Generating Functions","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-6","DOIUrl":"https://doi.org/10.1201/9781351215824-6","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126483861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorics 组合
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-3
Michael Z. Spivey
{"title":"Combinatorics","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-3","DOIUrl":"https://doi.org/10.1201/9781351215824-3","url":null,"abstract":"units and their combinatorial potential. Syntagmatics is treated as an aspect of language research, which involves the study of the rules of compatibility of the language units and their realization in speech. The focus is made on two linguistic phenomena: (1) valence, which is manifested at the language level and represents a potential combinability of language units, (2) compatibility, which is manifested at the level of speech and represents the realization of valency. Combinatorics is treated as making combinations of words that are subordinate to specific communicative tasks under the conditions of their implementation. The author argues that in the framework of combinatorial linguistics the syntagmatics includes forming language units in a linear sequence according to the ru- les of combinatorics. The limitations are commented: (1) in solving of communicative tasks (givenness of sense) (2) in terms of the implementation of this task, (3) in selecting a specific set of language units that express a given meaning. The author comes to the con-clusion that syntagmatics and combinatorics equally determine the combinability of lan- guage units and are relative to each other in equipollently opposition.","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131382054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miscellaneous Techniques 各种各样的技术
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-9
Michael Z. Spivey
{"title":"Miscellaneous Techniques","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-9","DOIUrl":"https://doi.org/10.1201/9781351215824-9","url":null,"abstract":"","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129151447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Numbers 特别的数字
The Art of Proving Binomial Identities Pub Date : 2019-05-10 DOI: 10.1201/9781351215824-8
Michael Z. Spivey
{"title":"Special Numbers","authors":"Michael Z. Spivey","doi":"10.1201/9781351215824-8","DOIUrl":"https://doi.org/10.1201/9781351215824-8","url":null,"abstract":"Iverson notation Iverson (the deviser of APL) invented the following handy bracket notation: [statement] = 1 if statement is true; 0 if statement is false. Thus, for example, [i = j] = 1 if i = j and [i = j] = 0 if i = j: [i = j] = δ ij , the Kronecker delta. Binomial Coefficients Here is the general definition of the binomial coefficient r k : r k := r k k! for real r and integer k ≥ 0; it is defined to be zero for real r and integer k < 0. For integer k ≥ 0, r k = [x k ](1 + x) r := coefficient of x k in the expansion of (1 + x) r. For integers k and n with 0 ≤ k ≤ n, n k , read \" n choose k, \" counts the number of ways to select a subset of k objects from a set of n objects. Stirling Numbers of the Second Kind For integers k and n ≥ 0, n k = coefficient of x k in x n written as a factorial polynomial. Thus, n k = 0 for integer k < 0 as well as for integer k > n, and for integer n ≥ 0, x n = n k=0 n k x k = k∈Z n k x k. Stirling numbers of the second kind satisfy the recurrence relation n k = k n − 1 k + n − 1 k − 1 for integer n > 0 and integer k with boundary conditions n 0 = [n = 0] and n n = 1. The number n k , read \" n subset k, \" counts the number of partitions of a set of n elements into k nonempty subsets. Other notations are used for Stirling numbers of the second kind. The classic handbook AMS 55 [1] uses a notation like S (k) n but with a fancy calligraphic \" S. \" Spiegel [3, p. 7] uses the notation S n k , while Combinatorics [4, p. 37] uses the notation S(n, k).","PeriodicalId":194932,"journal":{"name":"The Art of Proving Binomial Identities","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117185411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信