{"title":"Contribution of the wind, Loop Current Eddies, and topography to the circulation in the southern Gulf of Mexico","authors":"Erick R. Olvera-Prado, Rosario Romero-Centeno, Jorge Zavala-Hidalgo, Efraín Moreles, Angel Ruiz-Angulo","doi":"10.1007/s10236-023-01569-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01569-5","url":null,"abstract":"Abstract The Bay of Campeche, located in the southern Gulf of Mexico (GoM), is characterized by a semi-permanent cyclonic circulation commonly referred to as the Campeche Gyre (CG). Several studies documenting its upper layer structure have suggested a possible relationship between its seasonal variability and the wind stress, and that non-seasonal variability arises mainly from the interaction of the gyre with Loop Current Eddies (LCEs) that arrive in the region. Nevertheless, a partition of the contributions of these forcings to the circulation of the CG in a statistically consistent manner is still needed. This study examines the wind- and eddy-driven circulation with long-term numerical simulations of the GoM using the HYbrid Coordinate Ocean Model. Our results show that, in the absence of LCEs, the wind can sustain a seasonal-modulated circulation in the CG, confined within the upper 600 m. When considering LCEs, high fluctuations on the flow at intraseasonal time scales are imposed. We found that the LCEs influence the western Bay of Campeche circulation through two main mechanisms: (a) by decelerating and inhibiting the CG through a positive vorticity flux out of the bay, leading to reversals in the flow if LCE southward penetration is large, or (b) by strengthening the CG when a big cyclone, accompanying the LCE, enters the region. It is proposed that the second mechanism is responsible for inducing a net weak cyclonic circulation in the Bay in the absence of wind. Furthermore, past studies have shown that the CG behaves as an equivalent-barotropic flow, with topography acting to confine the CG to the west of the bay. In our modeling results, the role of topography manifests similarly among the different numerical experiments, resulting in closed geostrophic contours to the west of the bay that confine an upper-layer, nearly-symmetric, equivalent-barotropic CG.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"310 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135200166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-09-27DOI: 10.1007/s10236-023-01568-6
John Ssebandeke, Jin-Song von Storch, Nils Brüggemann
{"title":"Sensitivity of the Lorenz energy cycle of the global ocean","authors":"John Ssebandeke, Jin-Song von Storch, Nils Brüggemann","doi":"10.1007/s10236-023-01568-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01568-6","url":null,"abstract":"Abstract We re-examine the Lorenz energy cycle (LEC) for the global ocean by assessing its sensitivity to model and forcing differences. We do so by comparing LECs derived from two simulations based on different eddy-rich ocean models, ICON-O and MPI-OM, both driven by NCEP/NCAR reanalysis, and by comparing LECs derived from two simulations generated using ICON-O model but driven by two different reanalyses, NCEP/NCAR and ERA5. Regarding model difference, we find weaker eddy kinetic energy, $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , in the ICON-O simulation than in the MPI-OM simulation. We attribute this to the higher horizontal resolution of MPI-OM in the Southern Ocean. The weaker $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> in ICON-O is not caused by the lack of eddy available potential energy, $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , but by the strong dissipation of $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> and the resulting weak conversion from $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> to $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> . Regarding forcing difference, we find that considerably more mechanical energy is generated by the ERA5 forcing, which has a higher spatial-temporal resolution compared to the NCEP/NCAR forcing. In particular, the generation of $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , which also contains the resolved part of the internal wave spectrum, is enhanced by about 1 TW (40%). However, the dominance of the baroclinic and the barotropic pathways forces the enhanced generation of $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> to be balanced by an enhanced dissipation in the surface layer. The gross features of LEC are insensitive to both model and forcing differences, picturing the ocean as an inefficient “windmill” that converts only a small portion of the inputted mechanical energy into the interior mean and transient circulations.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-09-21DOI: 10.1007/s10236-023-01574-8
Yue Xu, Xiping Yu
{"title":"Dynamic interdependence of wind stress and sea state under action of a tropical cyclone moving from deep to shallow waters","authors":"Yue Xu, Xiping Yu","doi":"10.1007/s10236-023-01574-8","DOIUrl":"https://doi.org/10.1007/s10236-023-01574-8","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136155663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-09-11DOI: 10.1007/s10236-023-01572-w
Tapajyoti Chakraborty, Sandeep Pattnaik, Sudheer Joseph
{"title":"Influence of tropical cyclone Jawad on the surface and sub-surface circulation in the Bay of Bengal: ocean–atmosphere feedback","authors":"Tapajyoti Chakraborty, Sandeep Pattnaik, Sudheer Joseph","doi":"10.1007/s10236-023-01572-w","DOIUrl":"https://doi.org/10.1007/s10236-023-01572-w","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135982094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-08-29DOI: 10.1007/s10236-023-01570-y
T. Ezer
{"title":"Evaluation of the applicability of the Ekman theory for wind-driven ocean currents: a comparison with the Mellor–Yamada turbulent model","authors":"T. Ezer","doi":"10.1007/s10236-023-01570-y","DOIUrl":"https://doi.org/10.1007/s10236-023-01570-y","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"113 1","pages":"575 - 591"},"PeriodicalIF":2.3,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76083556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-08-25DOI: 10.1007/s10236-023-01571-x
Rafael Ricardo Torres, Sadid Latandret, Jhon Salon, Claudia Dagua
{"title":"Correction to: Water masses in the Caribbean Sea and sub‑annual variability in the Guajira upwelling region","authors":"Rafael Ricardo Torres, Sadid Latandret, Jhon Salon, Claudia Dagua","doi":"10.1007/s10236-023-01571-x","DOIUrl":"https://doi.org/10.1007/s10236-023-01571-x","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"57 1","pages":"593 - 593"},"PeriodicalIF":2.3,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73362092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-08-01DOI: 10.1007/s10236-023-01567-7
Yu Yan, Yuqing Zhou, Yingjun Xu, W. Gu
{"title":"Assessment of the spatiotemporal variability of seawater temperature and salinity in the Yellow and Bohai seas from multiple high-resolution reanalysis datasets","authors":"Yu Yan, Yuqing Zhou, Yingjun Xu, W. Gu","doi":"10.1007/s10236-023-01567-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01567-7","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"53 1","pages":"557 - 573"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91304283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-07-25DOI: 10.1007/s10236-023-01564-w
H. Zhang, D. Mason, N. W. Boucher, E. Rutherford, D. Cannon, J. Kessler, A. Fujisaki‐Manome, J. Wang, E. Fulton
{"title":"Effects of vertical mixing on the Lake Michigan food web: an application of a linked end-to-end earth system model framework","authors":"H. Zhang, D. Mason, N. W. Boucher, E. Rutherford, D. Cannon, J. Kessler, A. Fujisaki‐Manome, J. Wang, E. Fulton","doi":"10.1007/s10236-023-01564-w","DOIUrl":"https://doi.org/10.1007/s10236-023-01564-w","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"15 1","pages":"545 - 556"},"PeriodicalIF":2.3,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73568214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean DynamicsPub Date : 2023-07-22DOI: 10.1007/s10236-023-01560-0
M. Hart-Davis, Stendert Laan, C. Schwatke, B. Backeberg, D. Dettmering, F. Zijl, M. Verlaan, M. Passaro, F. Seitz
{"title":"Altimetry-derived tide model for improved tide and water level forecasting along the European continental shelf","authors":"M. Hart-Davis, Stendert Laan, C. Schwatke, B. Backeberg, D. Dettmering, F. Zijl, M. Verlaan, M. Passaro, F. Seitz","doi":"10.1007/s10236-023-01560-0","DOIUrl":"https://doi.org/10.1007/s10236-023-01560-0","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"122 1","pages":"475 - 491"},"PeriodicalIF":2.3,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76481307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}