Nuclear Physics APub Date : 2025-02-20DOI: 10.1016/j.nuclphysa.2025.123056
F. Kamgar, G.H. Bordbar, S.M. Zebarjad, M.A. Rastkhadiv
{"title":"The effect of three-body nucleon-nucleon interaction on the ground state binding energy of the light nuclei","authors":"F. Kamgar, G.H. Bordbar, S.M. Zebarjad, M.A. Rastkhadiv","doi":"10.1016/j.nuclphysa.2025.123056","DOIUrl":"10.1016/j.nuclphysa.2025.123056","url":null,"abstract":"<div><div>We calculate the ground state binding energies of the light nuclei such as <span><math><mmultiscripts><mrow><mi>H</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>4</mn></mrow></mmultiscripts><mi>e</mi></math></span>, <span><math><mmultiscripts><mrow><mi>L</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>6</mn></mrow></mmultiscripts><mi>i</mi></math></span>, <span><math><mmultiscripts><mrow><mi>C</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>12</mn></mrow></mmultiscripts></math></span> and <span><math><mmultiscripts><mrow><mi>N</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>14</mn></mrow></mmultiscripts></math></span> by considering the effect of three-body nucleon-nucleon interaction. We use the effective two-body potential obtained from the lowest order constrained variational (LOCV) calculations of the nuclear matter for the <span><math><mi>R</mi><mi>e</mi><mi>i</mi><mi>d</mi><mn>68</mn></math></span>, <span><math><mi>A</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>14</mn></mrow></msub></math></span>, <span><math><mi>U</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>14</mn></mrow></msub></math></span>, and <span><math><mi>A</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>18</mn></mrow></msub></math></span> nuclear potentials in different channels. To calculate the ground state binding energy, we implement the local density approximation by using the harmonic oscillator wave functions while the effect of three-body interaction is considered by employing the UIX potential. We compare the obtained two-body ground state binding energy with the energy related to the three-body effect. We also compare the obtained values with the experimental data and also work of others, and show that the results are relatively acceptable. We compute the root mean-square radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>m</mi><mi>s</mi></mrow></msub></math></span> of the above nuclei for the <span><math><mi>R</mi><mi>e</mi><mi>i</mi><mi>d</mi><mn>68</mn></math></span>, <span><math><mi>A</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>14</mn></mrow></msub></math></span>, <span><math><mi>U</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>14</mn></mrow></msub></math></span>, and <span><math><mi>A</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>18</mn></mrow></msub></math></span> potentials and compare the results with the experiment. We also obtain the contribution of different channels by matching to the experimental values of the quadrupole moments and magnetic dipole moments. Furthermore, we calculate the three-body cluster energy of the above nuclei and compare the results with that of nuclear matter. According to the obtained results, we see that the three-body cluster energy contribution is small. For example, for <span><math><mmultiscripts><mrow><mi>H</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>4</mn></mrow></mmultiscripts><mi>e</mi></math></span> nuclide, this value is 0.079 MeV with the <spa","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123056"},"PeriodicalIF":1.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-18DOI: 10.1016/j.nuclphysa.2025.123043
Dipankar Basak , Kalyan Dey
{"title":"Estimating centrality in heavy-ion collisions using Transfer Learning technique","authors":"Dipankar Basak , Kalyan Dey","doi":"10.1016/j.nuclphysa.2025.123043","DOIUrl":"10.1016/j.nuclphysa.2025.123043","url":null,"abstract":"<div><div>In this study, we explore the applicability of Transfer Learning techniques for estimating collision centrality in terms of the number of participants (<span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>part</mi></mrow></msub></math></span>) in high-energy heavy-ion collisions. In the present work, we leverage popular pre-trained CNN models such as VGG16, ResNet50, and DenseNet121 to determine <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>part</mi></mrow></msub></math></span> in Au+Au collisions at <span><math><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>200</mn></math></span> GeV on an event-by-event basis. Remarkably, all three models achieved good performance despite the pre-trained models being trained for databases of other domains. Particularly noteworthy is the superior performance of the VGG16 model, showcasing the potential of transfer learning techniques for extracting diverse observables from heavy-ion collision data.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123043"},"PeriodicalIF":1.7,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-17DOI: 10.1016/j.nuclphysa.2025.123040
D.J. Hinde , D.Y. Jeung , M. Dasgupta , J. Buete , K.J. Cook , C. Simenel , E.C. Simpson , H.M. Albers , Ch.E. Düllmann , J. Khuyagbaatar , A. Yakushev
{"title":"Quasifission and deep inelastic collisions competing with superheavy element creation","authors":"D.J. Hinde , D.Y. Jeung , M. Dasgupta , J. Buete , K.J. Cook , C. Simenel , E.C. Simpson , H.M. Albers , Ch.E. Düllmann , J. Khuyagbaatar , A. Yakushev","doi":"10.1016/j.nuclphysa.2025.123040","DOIUrl":"10.1016/j.nuclphysa.2025.123040","url":null,"abstract":"<div><div>Fusion forming superheavy elements is strongly inhibited by the faster non-equilibrium Deep Inelastic (DIC) and quasifission processes. These have often been considered as distinct processes, but recent measurements for reactions involving heavy nuclei such as <sup>208</sup>Pb and lighter suggest that these two processes form a continuum. However, for reactions of heavy ions with actinide nuclei, binary mass-split spectra show reduced yields for fragments lighter than the target, resulting in a peak in yield close to <sup>208</sup>Pb. This gives an apparent separation between DIC and quasifission outcomes. The <sup>208</sup>Pb peak has generally been attributed to the <sup>208</sup>Pb closed shells giving a valley in the potential energy surface, attracting quasifission trajectories. However, recent extensive binary and three-body cross-sections extracted for reactions of <sup>50</sup>Ti with actinide nuclides could not be explained in this framework. Rather, the big drop in yield observed for the heavier actinide targets is consistent with sequential fission of heavy deep inelastic/quasifission fragments.</div><div>To search for shell effects in quasifission independent of sequential fission, systematics of mass spectra in non-actinide reactions forming actinide compound nuclei were studied. These showed negligible effects of the shells <em>known</em> to cause low energy mass-asymmetric fission of these nuclei. All these results raise questions over the understanding of the effects of closed shells on the quasifission mechanism, and quasifission mass distributions.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1058 ","pages":"Article 123040"},"PeriodicalIF":1.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-17DOI: 10.1016/j.nuclphysa.2025.123032
J.B. Gupta , Vikas Katoch
{"title":"Review of nuclear structure N=86–118 of W isotopes","authors":"J.B. Gupta , Vikas Katoch","doi":"10.1016/j.nuclphysa.2025.123032","DOIUrl":"10.1016/j.nuclphysa.2025.123032","url":null,"abstract":"<div><div>Nuclear structure of N = 86–118 W isotopes in even <em>Z</em> even N contains ground state band K<sup>π</sup>=0<sup>+</sup>, K<sup>π</sup>=0<sup>+</sup> β-band and K<sup>π</sup>=2<sup>+</sup> γ-band. The energy <em>E</em>(2<sub>1</sub><sup>+</sup>) for spin I<sup>π</sup>=2<sup>+</sup> of ground state band shows minima at neutron number N = 108, which indicates shape phase transition. The energy ratio <em>R</em><sub>4/2</sub> is maximum at N = 108 having nearly rotational symmetry and showed shape phase transition. The Power index ‘b’ in <em>E</em>=aI<sup>b</sup>, shows minimum to maximum from N = 88 to N = 108 and again decreasing up to N = 116. The electromagnetic transition strength <strong><em>B</em>(<em>E2</em>)↑</strong> varies linearly with [1/ <em>E</em>(2<sub>1</sub><sup>+</sup>)]. The γ-band head difference with <em>E</em>(4<sub>1</sub><sup>+</sup>) is maximum at N = 108 and decreases for higher N, coming closer to the ground band. The band structure of W isotopes N = 108 to N = 112 is studied with the interacting boson model (IBM) and compared with experimental energies. Here the shape phase transitions, both sides of neutron number N = 108 <sup>182</sup>W is analyzed.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123032"},"PeriodicalIF":1.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-17DOI: 10.1016/j.nuclphysa.2025.123035
P. Dey , R. Palit , E. Ideguchi , T. Inakura , F.S. Babra , Biswajit Das , U. Garg , S.V. Jadhav , A.K. Jain , A. Kundu , Md.S.R. Laskar , B. Maheshwari , Vishal Malik , B.S. Naidu , D. Negi , S. Sihotra , A.T. Vazhappilly
{"title":"Particle-coupled octupole collectivity in 91Zr","authors":"P. Dey , R. Palit , E. Ideguchi , T. Inakura , F.S. Babra , Biswajit Das , U. Garg , S.V. Jadhav , A.K. Jain , A. Kundu , Md.S.R. Laskar , B. Maheshwari , Vishal Malik , B.S. Naidu , D. Negi , S. Sihotra , A.T. Vazhappilly","doi":"10.1016/j.nuclphysa.2025.123035","DOIUrl":"10.1016/j.nuclphysa.2025.123035","url":null,"abstract":"<div><div>Excited states in the semi-magic <sup>91</sup>Zr nucleus have been populated by the heavy-ion fusion-evaporation reaction <sup>82</sup>Se(<sup>13</sup>C, 4<em>n</em>) at 52 MeV beam energy for investigating the phenomenon of octupole collectivity in odd-<em>A</em> nuclei. The half-life of the <span><math><mn>11</mn><mo>/</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span> state at 2170.8 keV excitation energy has been measured by the electronic fast-timing technique using a hybrid array of clover HPGe and LaBr<sub>3</sub>(Ce) detectors, and is found to be <span><math><msup><mrow><mi>τ</mi></mrow><mrow><mi>expt</mi></mrow></msup><mo>=</mo><mn>791.6</mn><mo>±</mo><mn>44.1</mn></math></span> ps. The reduced <em>E</em>3 transition probability <span><math><mi>B</mi><mo>(</mo><mi>E</mi><mn>3</mn><mo>;</mo><mn>11</mn><mo>/</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo><mn>5</mn><mo>/</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>18.5</mn><mo>±</mo><mn>1.2</mn></math></span> W.u. is significant and confirms its collective nature. The experimentally obtained <span><math><mi>B</mi><mo>(</mo><mi>E</mi><mn>3</mn><mo>)</mo></math></span> value along with the excitation energy of particle-coupled octupole state is well reproduced in the theoretical calculations performed using random-phase approximation with three different interactions. In contrast to <sup>90</sup>Zr where the large <span><math><mi>B</mi><mo>(</mo><mi>E</mi><mn>3</mn><mo>)</mo></math></span> value is made mainly by proton particle-hole excitations, the change in the <span><math><mi>B</mi><mo>(</mo><mi>E</mi><mn>3</mn><mo>)</mo></math></span> value in <sup>91</sup>Zr is due to the valence neutron density of <span><math><mn>2</mn><msub><mrow><mi>d</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> orbital to <span><math><mn>1</mn><msub><mrow><mi>h</mi></mrow><mrow><mn>11</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> orbital.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123035"},"PeriodicalIF":1.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-15DOI: 10.1016/j.nuclphysa.2025.123037
Salvatore Simone Perrotta, Cole Davis Pruitt, Oliver C. Gorton, Jutta E. Escher
{"title":"Towards next-generation optical potentials for nuclear reactions and structure calculations","authors":"Salvatore Simone Perrotta, Cole Davis Pruitt, Oliver C. Gorton, Jutta E. Escher","doi":"10.1016/j.nuclphysa.2025.123037","DOIUrl":"10.1016/j.nuclphysa.2025.123037","url":null,"abstract":"<div><div>Optical-model potentials (OMPs) are critical ingredients for basic and applied nuclear physics. Present-day computational capabilities allow us to generate data-driven nucleon-nucleus OMPs that are non-local and exactly dispersive (as theoretically required to be), include statistically-sound uncertainty quantification, and are trained on both scattering and bound-state data from a wide area of the nuclear chart. Combined together, these features allow for significant improvement in fidelity and extrapolative power of the model. Here, we present preliminary work toward the development and training of such an OMP. The capability of the model to describe data at this first stage is encouraging.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123037"},"PeriodicalIF":1.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-14DOI: 10.1016/j.nuclphysa.2025.123041
Ali Mollaebrahimi , Paul Constantin , Timo Dickel , Daler Amanbayev , Simeon Glöckner , Emma Haettner , Debodyuti Kar , Gabriella Kripko-Koncz , Deepak Kumar , Kriti Mahajan , Israel Mardor , David Morrissey , Meetika Narang , Wolfgang R. Plaß , Amir Shrayer , Nazarena Tortorelli , Jiajun Yu , Jasmiina Ahokas , Beatriz Amorim , Samuel Ayet San Andrés , Jianwei Zhao
{"title":"First observation of MNT isotope beams at the FRS Ion Catcher","authors":"Ali Mollaebrahimi , Paul Constantin , Timo Dickel , Daler Amanbayev , Simeon Glöckner , Emma Haettner , Debodyuti Kar , Gabriella Kripko-Koncz , Deepak Kumar , Kriti Mahajan , Israel Mardor , David Morrissey , Meetika Narang , Wolfgang R. Plaß , Amir Shrayer , Nazarena Tortorelli , Jiajun Yu , Jasmiina Ahokas , Beatriz Amorim , Samuel Ayet San Andrés , Jianwei Zhao","doi":"10.1016/j.nuclphysa.2025.123041","DOIUrl":"10.1016/j.nuclphysa.2025.123041","url":null,"abstract":"<div><div>An exploratory experiment on Multi-Nucleon Transfer (MNT) reactions was successfully conducted at the FRS Ion Catcher setup at GSI. The experiment demonstrated the production of MNT-driven radioactive ion beams (RIBs) produced by decelerated relativistic beams. A beam of <sup>238</sup>U ions was reacted with a <sup>209</sup>Bi target at near-Coulomb barrier energies inside the specially modified Cryogenic Stopping Cell (CSC) for the production and thermalization of MNT products. These products were then identified using a Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS). The observation of target-like MNT fragments along the <span><math><mi>A</mi><mo>=</mo><mn>211</mn></math></span> isobaric chain provided a proof-of-principle for future MNT studies with the FRS Ion Catcher setup.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123041"},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-14DOI: 10.1016/j.nuclphysa.2025.123042
J. Williams , G. Hackman , K. Starosta , R.S. Lubna , Priyanka Choudhary , S. Sahoo , P.C. Srivastava , C. Andreoiu , D. Annen , H. Asch , M.D.H.K.G. Badanage , G.C. Ball , M. Beuschlein , H. Bidaman , V. Bildstein , R. Coleman , A.B. Garnsworthy , B. Greaves , G. Leckenby , V. Karayonchev , Z. Yu
{"title":"Cross-shell excited states in 32Si and 29Al populated using fusion-evaporation","authors":"J. Williams , G. Hackman , K. Starosta , R.S. Lubna , Priyanka Choudhary , S. Sahoo , P.C. Srivastava , C. Andreoiu , D. Annen , H. Asch , M.D.H.K.G. Badanage , G.C. Ball , M. Beuschlein , H. Bidaman , V. Bildstein , R. Coleman , A.B. Garnsworthy , B. Greaves , G. Leckenby , V. Karayonchev , Z. Yu","doi":"10.1016/j.nuclphysa.2025.123042","DOIUrl":"10.1016/j.nuclphysa.2025.123042","url":null,"abstract":"<div><div>In the neutron-rich <em>sd</em> shell near the <span><math><mi>N</mi><mo>=</mo><mn>20</mn></math></span> ‘island of inversion’, the evolution of the <span><math><mi>N</mi><mo>=</mo><mn>20</mn></math></span> shell gap is indicated by the energies of negative-parity states which primarily arise due to single neutron excitation to higher lying orbitals across the shell gap. These negative-parity states often have high spin (due to the participation of the <span><math><mn>0</mn><msub><mrow><mi>f</mi></mrow><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> orbital) and are therefore preferentially populated using fusion-evaporation reactions. We have studied the intermediate energy levels of <sup>32</sup>Si and <sup>29</sup>Al using <sup>12</sup>C(<sup>22</sup>Ne,2p) and <sup>12</sup>C(<sup>22</sup>Ne,<em>α</em>p) reactions, identifying several negative-parity states in both nuclides.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123042"},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-14DOI: 10.1016/j.nuclphysa.2025.123038
A.B. McIntosh , A.D. Abbott , M.Q. Sorensen , K. Hagel , A. Couture , J. Gauthier , S. Ota , A. Alvarez , S. Balakrishnan , R. Ghimire , M. Grinder , I. Jeanis , T. King , L.A. McIntosh , S. Mosby , S.D. Pain , C. Prokop , A. Ratkiewicz , S. Regener , A. Rodriguez-Manso , S.J. Yennello
{"title":"Development of the detector array for photons, protons, and exotic residues","authors":"A.B. McIntosh , A.D. Abbott , M.Q. Sorensen , K. Hagel , A. Couture , J. Gauthier , S. Ota , A. Alvarez , S. Balakrishnan , R. Ghimire , M. Grinder , I. Jeanis , T. King , L.A. McIntosh , S. Mosby , S.D. Pain , C. Prokop , A. Ratkiewicz , S. Regener , A. Rodriguez-Manso , S.J. Yennello","doi":"10.1016/j.nuclphysa.2025.123038","DOIUrl":"10.1016/j.nuclphysa.2025.123038","url":null,"abstract":"<div><div>Accurate neutron capture predictions are needed in fundamental and applied science. Empirical models are constrained largely for stable nuclei, but predictions far from stability are needed. Neutron transfer in (d, p) reactions in inverse kinematics with rare isotope beams offers a means to access key aspects of the capture process. To this end, the detector array for photons, protons, and exotic residues (DAPPER) has been designed, built, tested, and used for measurement at Texas A&M University.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123038"},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics APub Date : 2025-02-13DOI: 10.1016/j.nuclphysa.2025.123033
Ramutis Kazys Kalinauskas , Augustinas Stepšys , Darius Germanas , Saulius Mickevičius
{"title":"Calculation of harmonic oscillator brackets in SU(3) basis","authors":"Ramutis Kazys Kalinauskas , Augustinas Stepšys , Darius Germanas , Saulius Mickevičius","doi":"10.1016/j.nuclphysa.2025.123033","DOIUrl":"10.1016/j.nuclphysa.2025.123033","url":null,"abstract":"<div><div>We present a new approach for the Talmi-Moshinsky transformation representation in the harmonic oscillator basis. We utilize the SU(3) scheme for calculation of harmonic oscillator brackets. Using this scheme we obtain the explicit relations for numeric evaluation and present a computational approach.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1056 ","pages":"Article 123033"},"PeriodicalIF":1.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143422742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}