Number Theory: A Very Short Introduction最新文献

筛选
英文 中文
4. Congruences, clocks, and calendars 4. 一致性,时钟和日历
Number Theory: A Very Short Introduction Pub Date : 2020-05-28 DOI: 10.1093/actrade/9780198798095.003.0004
Robin Wilson
{"title":"4. Congruences, clocks, and calendars","authors":"Robin Wilson","doi":"10.1093/actrade/9780198798095.003.0004","DOIUrl":"https://doi.org/10.1093/actrade/9780198798095.003.0004","url":null,"abstract":"‘Congruences, clocks, and calendars’ demonstrates how we might apply the idea of congruence, first introduced by Gauss in 1801, to problems such as testing which Mersenne numbers are primes and finding the day of the week on which a given date falls. Ancient Chinese puzzles depended on the solving of simultaneous linear congruences, inspiring mathematicians and giving rise to the Chinese Remainder Theorem. Exploring quadratic congruences leads towards the law of quadratic reciprocity, noted by Euler and Legendre and proved by Gauss. The problem, ‘Is 1066 a square or a non-square?’ can be solved by applying this law several times to reduce the numbers involved.","PeriodicalId":190248,"journal":{"name":"Number Theory: A Very Short Introduction","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124323955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
8. How to win a million dollars 8. 如何赢得一百万美元
Number Theory: A Very Short Introduction Pub Date : 2020-05-28 DOI: 10.1093/actrade/9780198798095.003.0008
Robin Wilson
{"title":"8. How to win a million dollars","authors":"Robin Wilson","doi":"10.1093/actrade/9780198798095.003.0008","DOIUrl":"https://doi.org/10.1093/actrade/9780198798095.003.0008","url":null,"abstract":"What is the Riemann hypothesis, and why does it matter? ‘How to win a million dollars’ looks in detail at Riemann’s conjecture. While Gauss attempted to explain why primes thin out, Bernhard Riemann in 1859 proposed an exact formula for the distribution of primes, employing Euler’s ‘zeta function’ and the idea of complex numbers. In 2000, the Clay Mathematics Institute offered a million dollars for the solutions of each of seven famous problems, of which the Riemann hypothesis was one. The Riemann hypothesis implies strong bounds on the growth of other arithmetic functions, in addition to the primes-counting function. It remains one of the most famous unsolved problems of mathematics.","PeriodicalId":190248,"journal":{"name":"Number Theory: A Very Short Introduction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129986831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信