8. 如何赢得一百万美元

Robin Wilson
{"title":"8. 如何赢得一百万美元","authors":"Robin Wilson","doi":"10.1093/actrade/9780198798095.003.0008","DOIUrl":null,"url":null,"abstract":"What is the Riemann hypothesis, and why does it matter? ‘How to win a million dollars’ looks in detail at Riemann’s conjecture. While Gauss attempted to explain why primes thin out, Bernhard Riemann in 1859 proposed an exact formula for the distribution of primes, employing Euler’s ‘zeta function’ and the idea of complex numbers. In 2000, the Clay Mathematics Institute offered a million dollars for the solutions of each of seven famous problems, of which the Riemann hypothesis was one. The Riemann hypothesis implies strong bounds on the growth of other arithmetic functions, in addition to the primes-counting function. It remains one of the most famous unsolved problems of mathematics.","PeriodicalId":190248,"journal":{"name":"Number Theory: A Very Short Introduction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"8. How to win a million dollars\",\"authors\":\"Robin Wilson\",\"doi\":\"10.1093/actrade/9780198798095.003.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What is the Riemann hypothesis, and why does it matter? ‘How to win a million dollars’ looks in detail at Riemann’s conjecture. While Gauss attempted to explain why primes thin out, Bernhard Riemann in 1859 proposed an exact formula for the distribution of primes, employing Euler’s ‘zeta function’ and the idea of complex numbers. In 2000, the Clay Mathematics Institute offered a million dollars for the solutions of each of seven famous problems, of which the Riemann hypothesis was one. The Riemann hypothesis implies strong bounds on the growth of other arithmetic functions, in addition to the primes-counting function. It remains one of the most famous unsolved problems of mathematics.\",\"PeriodicalId\":190248,\"journal\":{\"name\":\"Number Theory: A Very Short Introduction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Number Theory: A Very Short Introduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/actrade/9780198798095.003.0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Number Theory: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780198798095.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

什么是黎曼假设,为什么它很重要?“如何赢得一百万美元”详细介绍了黎曼猜想。当高斯试图解释质数变薄的原因时,伯恩哈德·黎曼在1859年提出了一个精确的质数分布公式,利用欧拉的“ζ函数”和复数的思想。2000年,克莱数学研究所(Clay Mathematics Institute)为七个著名问题的解决方案提供了100万美元的奖金,黎曼假设就是其中之一。黎曼假设暗示了除素数函数外,其他算术函数的增长有很强的界。它仍然是数学中最著名的未解决问题之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
8. How to win a million dollars
What is the Riemann hypothesis, and why does it matter? ‘How to win a million dollars’ looks in detail at Riemann’s conjecture. While Gauss attempted to explain why primes thin out, Bernhard Riemann in 1859 proposed an exact formula for the distribution of primes, employing Euler’s ‘zeta function’ and the idea of complex numbers. In 2000, the Clay Mathematics Institute offered a million dollars for the solutions of each of seven famous problems, of which the Riemann hypothesis was one. The Riemann hypothesis implies strong bounds on the growth of other arithmetic functions, in addition to the primes-counting function. It remains one of the most famous unsolved problems of mathematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信