Nano Hybrids and Composites最新文献

筛选
英文 中文
Optimization of the Printing Parameters of Glass Fiber Reinforced PA6 Using Factorial Experiments 利用析因试验优化玻璃纤维增强PA6的打印参数
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-61cdpu
Marin Matei Corciu, Nicusor Alin Sirbu, Alin Constantin Murariu, Marius Cocard, Alexandru Adrian Geana
{"title":"Optimization of the Printing Parameters of Glass Fiber Reinforced PA6 Using Factorial Experiments","authors":"Marin Matei Corciu, Nicusor Alin Sirbu, Alin Constantin Murariu, Marius Cocard, Alexandru Adrian Geana","doi":"10.4028/p-61cdpu","DOIUrl":"https://doi.org/10.4028/p-61cdpu","url":null,"abstract":"Fiber-reinforced 3D printing filaments are composite materials compounded with short, chopped additives (in this paper case glass fibers) in a polymer matrix base. Engineering filaments and reinforced filaments have gotten a lot more popular in the last few years due to their capabilities and added properties given by the reinforced material. The biggest drawback reinforced materials have other than the cost is the printability. Due to the abrasive nature of glass fiber to be able to successfully print it certain modifications to the FDM equipment must be made, such as using a tempered steel nozzle. It is also recommended to print the components in a temperature-controlled room and to keep the humidity level of the material before printing as low as possible. In this paper a glass fiber reinforced PA6 filament was tested using different printing parameters (temperature, printing speed, layer height) to establish the optimal parameters for reducing the risk reinforced materials pose for the FDM equipment while also looking for the best mechanical properties of the printed parts.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aspects Regarding of Nanomaterials and Nanocomposites in 3D Printing Technology Process Development for Application in Biomedicine 纳米材料和纳米复合材料3D打印技术在生物医学中的应用
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-5csx5x
Vlad Ștefan Constantin, Alexandru Adrian Geana, Marin Matei Corciu
{"title":"Aspects Regarding of Nanomaterials and Nanocomposites in 3D Printing Technology Process Development for Application in Biomedicine","authors":"Vlad Ștefan Constantin, Alexandru Adrian Geana, Marin Matei Corciu","doi":"10.4028/p-5csx5x","DOIUrl":"https://doi.org/10.4028/p-5csx5x","url":null,"abstract":"This paper will present the advantages of developing the 3D printing process of nanomaterials in different fields such as electronics, biomedical and bioelectronics. As it is already known, nanomaterials are starting to become more and more useful, and more emphasis is being put on the development of new technologies to enable the use of these materials. Nanomaterials consist mainly of chemical substances made up from very small particles that are no larger than a hundred nanometers. These materials occur in nature, they can be an accidental product of human activity, or they can be consciously made to develop new characteristics such as strength, chemical reactivity or increased conductivity compared to the same material that does not display nanometric characteristics. By integrating nanomaterials to 3D printing technology, it is possible to create unique structures, which are difficult to achieve. Nanomaterials can possibly work on personal satisfaction and add to the advancement of European industry. However, new materials can also pose health and environmental risks. Scientific research has turned its attention to the potential outcomes of the production and application of nanomaterials. Meanwhile, the newest method for 3D printing of nanomaterials is Multiphase Direct Ink Writing (MDIW), a method developed from Direct Ink Writing (DIW), a revolutionary additive manufacturing mechanism with wide applications in structural engineering systems, thermal isolation, electrical conductivity, optical reflectivity, and biomedical scaffolds.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Nanocellulose Extracted from Pineapple Leaf Fiber Incorporation on the Physico-Chemical and Thermal Properties of Reinforced Epoxy Nanocomposites 菠萝叶纤维提取纳米纤维素对增强环氧纳米复合材料理化和热性能的影响
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-omr6hu
Jessalyn C. Grumo, Lady Jaharah Jabber Bulayog, Arnold A. Lubguban, Rey Capangpangan, Akihiro Yabuki, Arnold C. Alguno
{"title":"Effects of Nanocellulose Extracted from Pineapple Leaf Fiber Incorporation on the Physico-Chemical and Thermal Properties of Reinforced Epoxy Nanocomposites","authors":"Jessalyn C. Grumo, Lady Jaharah Jabber Bulayog, Arnold A. Lubguban, Rey Capangpangan, Akihiro Yabuki, Arnold C. Alguno","doi":"10.4028/p-omr6hu","DOIUrl":"https://doi.org/10.4028/p-omr6hu","url":null,"abstract":"The effects of nanocellulose extracted from pineapple leaf fiber on the physico-chemical and thermal properties of epoxy nanocomposite are reported. Nanocellulose was added to the epoxy in different amounts of loadings (0.5, 1.0, 1.5, and 2.0 wt.%) to prepare nanocomposites. The physico-chemical and thermal properties of the nanocellulose reinforced epoxy nanocomposites were investigated. Surface characterization of the nanocomposite was done using scanning electron microscopy (SEM). Functional groups of the nanocomposites were evaluated using fourier transform infrared (FTIR) spectroscopy. Thermal properties of the nanocomposites were investigated using thermogravimetric analyzer (TGA) and differential thermal analyzer (DTA). Experimental results revealed that the 0.5, 1.0, and 1.5 wt.% nanocellulose loadings were homogeneously distributed and well-dispersed in the composite matrix as indicated in the SEM images. However, aggregation was observed in the matrix with 2.0 wt.% nanocellulose loading. Moreover, FTIR spectra revealed that the absorbance of the vibrational mode corresponding to the interaction of nanocellulose and epoxy matrices significantly increases as the nanocellulose loading ratio increased. Furthermore, thermal analysis (TGA/DTA) showed that the incorporation of nanocellulose improved significantly the thermal properties of epoxy nanocomposites.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressive Behavior of Various BCC Lattice Structure 不同BCC晶格结构的压缩性能
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-vo3r4q
Stefan Adrian Timpea, Cosmin Codrean, Nicusor Alin Sirbu, Adrian Ilie Dume, Cristian Cosma, Viorel Aurel Serban
{"title":"Compressive Behavior of Various BCC Lattice Structure","authors":"Stefan Adrian Timpea, Cosmin Codrean, Nicusor Alin Sirbu, Adrian Ilie Dume, Cristian Cosma, Viorel Aurel Serban","doi":"10.4028/p-vo3r4q","DOIUrl":"https://doi.org/10.4028/p-vo3r4q","url":null,"abstract":"The lattice structures are a particular type of structures made by the multiply of a unit cell. In addition, their structure is close to some physiological tissues and bone structure, which can allow their use to develop prostheses needed to the rehabilitation or replacement of a body part. Lattice structures are widely used in various engineering applications due to their high weight-to-strength ratio and exceptional energy absorbing performance. The feasibility of using different base materials to fabricate these cellular structures with complex geometries has been significantly widen with the development of additive manufacturing (AM) technology. Additive manufacturing in particular metal selective laser melting (SLM) processes are rapidly being industrialized. In this work, samples with different lattice structures were manufactured by SLM technique using CoCr powder alloy. Compression tests were carried out to characterize their mechanical behavior. Starting from a BCC lattice cell measuring 5x5x5mm and 1mm diameter of the strut, were designed using Catia V5 R19 software. The BCC lattice unit cell consists of 4 solid struts with circular cross-section by which they intersected at 45°angle and modify by adding radius at the intersection of all four struts, furthermore the empty space is filled with BCC cell to increase the stiffens of the structure. The BCC cell was duplicate in three directions (X, Y, Z) measuring 20mm in each direction. To obtain the final part the BCC structure ware intersected with a cylindrical part measuring 20mm in Z direction, 15mm diameter and 1mm wall thickness, resulting a cylindrical part with three different BCC lattice structure inside.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano Hybrids and Composites Vol. 41 纳米杂化与复合材料》第 41 卷
IF 0.4
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/b-zntfa7
N. Sîrbu, A. Shidiq
{"title":"Nano Hybrids and Composites Vol. 41","authors":"N. Sîrbu, A. Shidiq","doi":"10.4028/b-zntfa7","DOIUrl":"https://doi.org/10.4028/b-zntfa7","url":null,"abstract":"","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"50 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139319578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-Friendly of Sound-Absorbing Material Based on Polyurethane-Urea with Natural Fiber Waste 天然废纤维聚氨酯-尿素吸声材料的生态友好型研究
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-cpix3a
Mohammad Masykuri, Herlina Nofitasari, Romy Dyah Rahmawati
{"title":"Eco-Friendly of Sound-Absorbing Material Based on Polyurethane-Urea with Natural Fiber Waste","authors":"Mohammad Masykuri, Herlina Nofitasari, Romy Dyah Rahmawati","doi":"10.4028/p-cpix3a","DOIUrl":"https://doi.org/10.4028/p-cpix3a","url":null,"abstract":"Noise has a wide impact on human health and non-health. One of the sound-absorbing materials commonly used in the community is polyurethane-urea foam. However, public concerns about the environment because the availability of petroleum as a raw material for polyurethane-urea foam synthesis is limited, and the waste pollutes the environment, posing a new challenge to be researched. For this reason, this study aims to develop polyurethane-urea foam with a mixture of natural fiber waste as an eco-friendly alternative to sound-absorbing materials. The raw materials used were natural fiber waste (rice straw waste and plywood industry sawdust waste) and chemicals (PEG, MDI, EDA, MAH), with a waste composition of 5% (w/w). The synthesis method employed was a one-shot method. The synthesized foam was characterized by FTIR, camera microscope, SEM, TGA and acoustic tests. The results uncovered that the sample had peaks in the absorption of the functional groups NH, OH, Urethane, Aromatic, and Amide. The morphological structure of the foam consisted of an open cell and a closed cell. Its thermal resistance was above 125°C. In addition, the foam with the highest sound-absorbing ability was polyurethane-urea foam/rice straw waste at 0.83 at a frequency of 4312 Hz.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and Experimental Study for Al4043A Aluminium-Silicium Alloy Fabricated by Wire Arc Additive Manufacturing under Dynamic Tests 动态试验条件下电弧增材制造Al4043A铝硅合金的数值与实验研究
Nano Hybrids and Composites Pub Date : 2023-10-13 DOI: 10.4028/p-o9colx
Sergiu-Valentin Galatanu, Iuliana Duma, Cosmin Florin Popa, Alin Constantin Murariu, Ion Aurel Perianu, Liviu Marsavina
{"title":"Numerical and Experimental Study for Al4043A Aluminium-Silicium Alloy Fabricated by Wire Arc Additive Manufacturing under Dynamic Tests","authors":"Sergiu-Valentin Galatanu, Iuliana Duma, Cosmin Florin Popa, Alin Constantin Murariu, Ion Aurel Perianu, Liviu Marsavina","doi":"10.4028/p-o9colx","DOIUrl":"https://doi.org/10.4028/p-o9colx","url":null,"abstract":"The paper presents an experimental investigation of the impact properties and imperfections of the 3D printed Al4043A aluminium-silicium alloy using wire-arc additive manufacturing. Using an experimental program based on factorial experiments, correlations between the main WAAM process parameters and the related properties of the deposition were determined. Charpy impact strength investigations, using standard notched specimens, were performed on an Instron CEAST 9050 instrumented Charpy impact pendulum system following the ISO 148-1 standard. During the experimental tests, the brittle behaviour of the specimens could be observed. After the experimental tests, the impact behaviour was numerically analysed, showing a relatively good correlation between the results.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Densely-Packed Janus Gold Nanoparticles Layer by Self-Assembly for a Potential Molecular Sensing Probe 用自组装方法制备致密堆积的Janus金纳米颗粒层,用于潜在的分子传感探针
IF 0.4
Nano Hybrids and Composites Pub Date : 2023-07-31 DOI: 10.4028/p-QK9qQf
M. T. Pambudi, A. Iskandar, P. Wulandari
{"title":"Fabrication of Densely-Packed Janus Gold Nanoparticles Layer by Self-Assembly for a Potential Molecular Sensing Probe","authors":"M. T. Pambudi, A. Iskandar, P. Wulandari","doi":"10.4028/p-QK9qQf","DOIUrl":"https://doi.org/10.4028/p-QK9qQf","url":null,"abstract":"Localized surface plasmon phenomena of metallic nanoparticles could be utilized for sensing applications. As the particles in the vicinity results in a near-field coupling phenomenon, a higher field enhancement factor increases the sensing sensitivity. In this research, we propose a self-assembled and closely-packed Janus gold nanoparticle (AuNP) structure for application in molecular sensing. We utilize three-phase interfacial trapping and Langmuir-Schaefer method for the fabrication of Janus AuNP layer. In our case, dodecylamine (DDA) was used as the analyte for sensing assay. We found that the color of our AuNP changes from red-wine to blue in conjunction with the phase changes from colloidal to closely-packed layer that results in a red-shift absorbance peak. In the application of sensing assay, the absorbance peak is revealed blue-shifted up to ~40 nm from pristine AuNP layer due to the adsorption of DDA on the particle surfaces. Sensitivity enhancement is also expected due to the hotspot arises from the plasmonic particles in vicinity. This research could be further developed to a sensitive and quantitative molecular sensor up to colorimetric specific biosensor.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"78 1","pages":"19 - 24"},"PeriodicalIF":0.4,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77191892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic and Optical Properties of Single-Walled Carbon Nanotube Functionalized by CH3COOH CH3COOH功能化单壁碳纳米管的电子和光学性质
IF 0.4
Nano Hybrids and Composites Pub Date : 2023-07-31 DOI: 10.4028/p-I3oNUx
A. A. Pido, Norodin A. Rangaig, A. Munio, Rayno Vic B. Janayon, Leo Cristobal C. Ambolode II
{"title":"Electronic and Optical Properties of Single-Walled Carbon Nanotube Functionalized by CH3COOH","authors":"A. A. Pido, Norodin A. Rangaig, A. Munio, Rayno Vic B. Janayon, Leo Cristobal C. Ambolode II","doi":"10.4028/p-I3oNUx","DOIUrl":"https://doi.org/10.4028/p-I3oNUx","url":null,"abstract":"Organic functionalization of carbon nanotubes (CNTs) plays very important role in the development of electrochemical biosensors. In this study, pristine (5,5) carbon nanotube was functionalized by Ethanoic Acid (CH3COOH) using First Principles Density Functional Theory (DFT). It was found that the encapsulation of CH3COOH into the (5,5) CNT is endothermic due to the small diameter of the tube. However, interacting it outside the sidewall of the tube gives an exothermic process indicating a stable geometry. Accordingly, additional electronic bands and peaks are observed in the electronic structures of the functionalized CNT. Further, it was shown that that the p orbitals of the oxygen atoms and carbon atoms of the acid are the main contributors of the additional peaks in the valence and conduction regions, respectively. Finally, there were observed optical transitions in the functionalized CNT caused by the hybridization of the armchair CNT. Evidently, this study provided insights on more potential applications of carbon nanotubes as biosensors.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"87 1","pages":"25 - 33"},"PeriodicalIF":0.4,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72972598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano Hybrids and Composites Vol. 40 纳米杂化与复合材料》第 40 卷
IF 0.4
Nano Hybrids and Composites Pub Date : 2023-07-31 DOI: 10.4028/b-odrt5g
Amir Al-Ahmed, Yun-Hae Kim, Agustinus Agung Nugroho
{"title":"Nano Hybrids and Composites Vol. 40","authors":"Amir Al-Ahmed, Yun-Hae Kim, Agustinus Agung Nugroho","doi":"10.4028/b-odrt5g","DOIUrl":"https://doi.org/10.4028/b-odrt5g","url":null,"abstract":"","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"47 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139353136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信