mSystems最新文献

筛选
英文 中文
Multi-omics analysis reveals the core microbiome and biomarker for nutrition degradation in alfalfa silage fermentation. 多组学分析揭示了苜蓿青贮发酵过程中的核心微生物群和营养降解的生物标志物。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-23 DOI: 10.1128/msystems.00682-24
Yuan Wang, Yunlei Sun, KeXin Huang, Yu Gao, Yufan Lin, Baojie Yuan, Xin Wang, Gang Xu, Luiz Gustavo Nussio, Fuyu Yang, Kuikui Ni
{"title":"Multi-omics analysis reveals the core microbiome and biomarker for nutrition degradation in alfalfa silage fermentation.","authors":"Yuan Wang, Yunlei Sun, KeXin Huang, Yu Gao, Yufan Lin, Baojie Yuan, Xin Wang, Gang Xu, Luiz Gustavo Nussio, Fuyu Yang, Kuikui Ni","doi":"10.1128/msystems.00682-24","DOIUrl":"https://doi.org/10.1128/msystems.00682-24","url":null,"abstract":"<p><p>Alfalfa (<i>Medicago sativa</i> L.) is one of the most extensively cultivated forage crops globally, and its nutritional quality critically influences the productivity of dairy cows. Silage fermentation is recognized as a crucial technique for the preservation of fresh forage, ensuring the retention of its vital nutrients. However, the detailed microbial components and their functions in silage fermentation are not fully understood. This study integrated large-scale microbial culturing with high-throughput sequencing to thoroughly examine the microbial community structure in alfalfa silage and explored the potential pathways of nutritional degradation via metagenomic analysis. The findings revealed an enriched microbial diversity in silage, indicated by the identification of amplicon sequence variants. Significantly, the large-scale culturing approach recovered a considerable number of unique microbes undetectable by high-throughput sequencing. Predominant genera, such as <i>Lactiplantibacillus</i>, <i>Leuconostoc</i>, <i>Lentilactobacillus</i>, <i>Weissella</i>, and <i>Liquorilactobacillus</i>, were identified based on their abundance and prevalence. Additionally, genes associated with Enterobacteriaceae were discovered, which might be involved in pathways leading to the production of ammonia-N and butyric acid. Overall, this study offers a comprehensive insight into the microbial ecology of silage fermentation and provides valuable information for leveraging microbial consortia to enhance fermentation quality.</p><p><strong>Importance: </strong>Silage fermentation is a microbial-driven anaerobic process that efficiently converts various substrates into nutrients readily absorbable and metabolizable by ruminant animals. This study, integrating culturomics and metagenomics, has successfully identified core microorganisms involved in silage fermentation, including those at low abundance. This discovery is crucial for the targeted cultivation of specific microorganisms to optimize fermentation processes. Furthermore, our research has uncovered signature microorganisms that play pivotal roles in nutrient metabolism, significantly advancing our understanding of the intricate relationships between microbial communities and nutrient degradation during silage fermentation.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations in purine and pyrimidine metabolism associated with latent tuberculosis infection: insights from gut microbiome and metabolomics analyses. 与肺结核潜伏感染相关的嘌呤和嘧啶代谢变化:肠道微生物组和代谢组学分析的启示。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 DOI: 10.1128/msystems.00812-24
Boyi Yang, Xiaojing Guo, Chongyu Shi, Gang Liu, Xiaoling Qin, Shiyi Chen, Li Gan, Dongxu Liang, Kai Shao, Ruolan Xu, Jieqing Zhong, Yujie Mo, Hai Li, Dan Luo
{"title":"Alterations in purine and pyrimidine metabolism associated with latent tuberculosis infection: insights from gut microbiome and metabolomics analyses.","authors":"Boyi Yang, Xiaojing Guo, Chongyu Shi, Gang Liu, Xiaoling Qin, Shiyi Chen, Li Gan, Dongxu Liang, Kai Shao, Ruolan Xu, Jieqing Zhong, Yujie Mo, Hai Li, Dan Luo","doi":"10.1128/msystems.00812-24","DOIUrl":"10.1128/msystems.00812-24","url":null,"abstract":"<p><p>Individuals with latent tuberculosis infection (LTBI) account for almost 30% of the population worldwide and have the potential to develop active tuberculosis (ATB). Despite this, the current understanding of the pathogenesis of LTBI is limited. The gut microbiome can be altered in tuberculosis patients, and an understanding of the changes associated with the progression from good health to LTBI to ATB can provide novel perspectives for understanding the pathogenesis of LTBI by identifying microbial and molecular biomarkers associated therewith. In this study, fecal samples from healthy controls (HC), individuals with LTBI and ATB patients were collected for gut microbiome and metabolomics analyses. Compared to HC and LTBI subjects, participants with ATB showed a significant decrease in gut bacterial α-diversity. Additionally, there were significant differences in gut microbial communities and metabolism among the HC, LTBI, and ATB groups. PICRUSt2 analysis revealed that microbiota metabolic pathways involving the degradation of purine and pyrimidine metabolites were upregulated in LTBI and ATB individuals relative to HCs. Metabolomic profiling similarly revealed that purine and pyrimidine metabolite levels were decreased in LTBI and ATB samples relative to those from HCs. Further correlation analyses revealed that the levels of purine and pyrimidine metabolites were negatively correlated with those of gut microbial genera represented by <i>Ruminococcus_gnavus_group</i> (<i>R. gnavus</i>), and the levels of <i>R. gnavus</i> were also positively correlated with adenosine nucleotide degradation II, which is a purine degradation pathway. Moreover, a combined signature including hypoxanthine and xanthine was found to effectively distinguish between LTBI and HC samples (area under the curve [AUC] of training set = 0.796; AUC of testing set = 0.924). Therefore, through gut microbiome and metabolomic analyses, these findings provide valuable clues regarding how alterations in gut purine and pyrimidine metabolism are linked to the pathogenesis of LTBI.IMPORTANCEThis study provides valuable insight into alterations in the gut microbiome and metabolomic profiles in a cohort of adults with LTBI and ATB. Perturbed gut purine and pyrimidine metabolism in LTBI was associated with the compositional alterations of gut microbiota, which may be an impetus for developing novel diagnostic strategies and interventions targeting LTBI.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-associated microbes mitigate the negative impacts of aquatic pollution. 宿主相关微生物减轻了水生污染的负面影响。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-08-29 DOI: 10.1128/msystems.00868-24
Rachel E Diner, Sarah M Allard, Jack A Gilbert
{"title":"Host-associated microbes mitigate the negative impacts of aquatic pollution.","authors":"Rachel E Diner, Sarah M Allard, Jack A Gilbert","doi":"10.1128/msystems.00868-24","DOIUrl":"10.1128/msystems.00868-24","url":null,"abstract":"<p><p>Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A "plus one" strategy impacts replication of felid alphaherpesvirus 1, Mycoplasma and Chlamydia, and the metabolism of coinfected feline cells. 加一 "策略会影响猫科动物甲型疱疹病毒 1、支原体和衣原体的复制,以及合并感染的猫科动物细胞的新陈代谢。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-09-24 DOI: 10.1128/msystems.00852-24
Sara M Klose, David P De Souza, Joanne M Devlin, Rhys Bushell, Glenn F Browning, Paola K Vaz
{"title":"A \"plus one\" strategy impacts replication of felid alphaherpesvirus 1, <i>Mycoplasma</i> and <i>Chlamydia,</i> and the metabolism of coinfected feline cells.","authors":"Sara M Klose, David P De Souza, Joanne M Devlin, Rhys Bushell, Glenn F Browning, Paola K Vaz","doi":"10.1128/msystems.00852-24","DOIUrl":"10.1128/msystems.00852-24","url":null,"abstract":"<p><p>Coinfections are known to play an important role in disease progression and severity. Coinfections are common in cats, but no coinfection studies have investigated the <i>in vitro</i> dynamics between feline viral and bacterial pathogens. In this study, we performed co-culture and invasion assays to investigate the ability of common feline bacterial respiratory pathogens, <i>Chlamydia felis</i> and <i>Mycoplasma felis</i>, to replicate in and invade into Crandell-Rees feline kidney cells. We subsequently investigated how coinfection of these feline cells with each bacterium (<i>C. felis</i> or <i>M. felis</i>) and the common feline viral pathogen, felid alphaherpesvirus 1 (FHV-1), affects replication of each agent in this cell culture system. We also investigated the metabolic impact of each co-pathogen using metabolomic analysis of infected and coinfected cells. <i>C. felis</i> was able to invade and replicate in CRFKs, while <i>M. felis</i> had little capacity to invade. During coinfection, FHV-1 replication was minimally affected by the presence of either bacterial pathogen, but bacterial replication kinetics were more affected, particularly in <i>M. felis</i>. Both <i>C. felis</i> and <i>M. felis</i> replicated to higher levels in the presence of a secondary pathogen. Coinfections resulted in reprogramming of the glycolysis pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle. The distinct metabolic profiles of coinfected cells compared to those of cells infected with just one of these three pathogens, as well as the impact of coinfections on viral or bacterial load, suggest strong interactions between these three pathogens and possible synergistic mechanisms enhancing virulence that need further investigation.IMPORTANCEIn the natural world, respiratory pathogens coexist within their hosts, but their dynamics and interactions remain largely unexplored. Herpesviruses, mycoplasmas, and chlamydias are common and significant causes of acute and chronic respiratory and system disease in animals and people, and these diseases are increasingly found to be polymicrobial. This study investigates how coinfection of feline cells between three respiratory pathogens of cats impact each other as well as the host innate metabolic response to infection. Each of these pathogens have been implicated in the induction of feline upper respiratory tract disease in cats, which is the leading cause of euthanasia in shelters. Understanding how coinfection impacts co-pathogenesis and host responses is critical for improving disease management.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. 费氏弧菌中环状二聚氰胺调节蛋白的功能分析
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 DOI: 10.1128/msystems.00956-24
Ruth Y Isenberg, Chandler S Holschbach, Jing Gao, Mark J Mandel
{"title":"Functional analysis of cyclic diguanylate-modulating proteins in <i>Vibrio fischeri</i>.","authors":"Ruth Y Isenberg, Chandler S Holschbach, Jing Gao, Mark J Mandel","doi":"10.1128/msystems.00956-24","DOIUrl":"10.1128/msystems.00956-24","url":null,"abstract":"<p><p>As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. <i>Vibrio fischeri</i> is the sole beneficial symbiont of the Hawaiian bobtail squid (<i>Euprymna scolopes</i>) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. c-di-GMP regulates swimming motility and cellulose exopolysaccharide production in <i>V. fischeri</i>. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 <i>V</i>. <i>fischeri</i> proteins. All 28 predicted DGCs and 10 of the 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.IMPORTANCECyclic diguanylate (c-di-GMP) is a critical second messenger that mediates bacterial behaviors, and <i>Vibrio fischeri</i> colonization of its Hawaiian bobtail squid host presents a tractable model in which to interrogate the role of c-di-GMP during animal colonization. This work provides systems-level characterization of the 50 proteins predicted to modulate c-di-GMP levels. By combining multiple assays, we generated a rich understanding of which proteins have the capacity to influence c-di-GMP levels and behaviors. Our functional approach yielded insights into how proteins with domains to both synthesize and degrade c-di-GMP may impact bacterial behaviors. Finally, we integrated published data to provide a broader picture of each of the 50 proteins analyzed. This study will inform future work to define specific pathways by which c-di-GMP regulates symbiotic behaviors and transitions.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of training of anti-Staphylococcus aureus therapeutic phages against Staphylococcus epidermidis multidrug-resistant isolates is restricted by inter- and intra-sequence type specificity. 抗金黄色葡萄球菌治疗噬菌体对表皮葡萄球菌多重耐药分离物的治疗潜力受到序列间和序列内类型特异性的限制。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-09-09 DOI: 10.1128/msystems.00850-24
Camille Kolenda, Mélanie Bonhomme, Mathieu Medina, Mateo Pouilly, Clara Rousseau, Emma Troesch, Patricia Martins-Simoes, Marc Stegger, Paul O Verhoeven, Floriane Laumay, Frédéric Laurent
{"title":"Potential of training of anti-<i>Staphylococcus aureus</i> therapeutic phages against <i>Staphylococcus epidermidis</i> multidrug-resistant isolates is restricted by inter- and intra-sequence type specificity.","authors":"Camille Kolenda, Mélanie Bonhomme, Mathieu Medina, Mateo Pouilly, Clara Rousseau, Emma Troesch, Patricia Martins-Simoes, Marc Stegger, Paul O Verhoeven, Floriane Laumay, Frédéric Laurent","doi":"10.1128/msystems.00850-24","DOIUrl":"10.1128/msystems.00850-24","url":null,"abstract":"<p><p>Phage therapy appears to be a promising approach to tackle multidrug-resistant bacteria, including staphylococci. However, most anti-staphylococcal phages have been characterized in <i>Staphylococcus aureus</i>, while a limited number of studies investigated phage activity against <i>S. epidermidis</i>. We studied the potential of phage training to extend the host range of two types of anti-<i>S</i>. <i>aureus</i> phages against <i>S. epidermidis</i> isolates. The Appelmans protocol was applied to a mixture of <i>Kayvirus</i> and a mixture of <i>Silviavirus</i> phages repeatedly exposed to seven <i>S</i>. <i>epidermidis</i> strains representative of nosocomial-associated sequence types (ST), including the world-wide disseminated ST2. We observed increased activity only for the <i>Kayvirus</i> mixture against two of these strains (ST2 or ST35). Phage subpopulations isolated from the training mixture using these two strains (five/strain) exhibited different evolved phenotypes, active only against their isolation strain or strains of the same ST. Of note, 16/47 ST2 strains were susceptible to one of the groups of trained phages. A comparative genomic analysis of ancestral and trained phage genomes, conducted to identify potential bacterial determinants of such specific activity, found numerous recombination events between two of the three ancestors. However, a small number of trained phage genes had nucleotide sequence modifications impacting the corresponding protein compared to ancestral phages, two to four of them per phage genome being specific of each group of phage subpopulations exhibiting different host range. The results suggest that anti-<i>S</i>. <i>aureus</i> phages can be adapted to <i>S. epidermidis</i> isolates but with inter- and intra-ST specificity.Importance<i>S. epidermidis</i> is increasingly recognized as a threat for public health. Its clinical importance is notably related to multidrug resistance. Phage therapy is one of the most promising alternative therapeutic strategies to antibiotics. Nonetheless, only very few phages active against this bacterial species have been described. In the present study, we showed that phage training can be used to extend the host range of polyvalent <i>Kayvirus</i> phages within the <i>Staphylococcus</i> genera to include <i>S. epidermidis</i> species. In the context of rapid development of phage therapy, <i>in vitro</i> forced adaptation of previously characterized phages could be an appealing alternative to fastidious repeated isolation of new phages to improve the therapeutic potential of a phage collection.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli. PhoPQ 介导的脂多糖修饰决定了大肠杆菌对四环素和甘氨环素抗生素的内在耐药性。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-09-30 DOI: 10.1128/msystems.00964-24
Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee
{"title":"PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in <i>Escherichia coli</i>.","authors":"Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee","doi":"10.1128/msystems.00964-24","DOIUrl":"10.1128/msystems.00964-24","url":null,"abstract":"<p><p>Tetracyclines and glycylcycline are among the important antibiotics used to combat infections caused by multidrug-resistant Gram-negative pathogens. Despite the clinical importance of these antibiotics, their mechanisms of resistance remain unclear. In this study, we elucidated a novel mechanism of resistance to tetracycline and glycylcycline antibiotics via lipopolysaccharide (LPS) modification. Disruption of the <i>Escherichia coli</i> PhoPQ two-component system, which regulates the transcription of various genes involved in magnesium transport and LPS modification, leads to increased susceptibility to tetracycline, minocycline, doxycycline, and tigecycline. These phenotypes are caused by enhanced expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core sugar of LPS. PhoPQ-mediated regulation of EptB expression appears to affect the intracellular transportation of doxycycline. Disruption of EptB increases resistance to tetracycline and glycylcycline antibiotics, whereas the other two phosphoethanolamine transferases, EptA and EptC, that participate in the modification of other LPS residues, are not associated with resistance to tetracyclines and glycylcycline. Overall, our results demonstrated that PhoPQ-mediated modification of a specific residue of LPS by phosphoethanolamine transferase EptB governs intrinsic resistance to tetracycline and glycylcycline antibiotics.</p><p><strong>Importance: </strong>Elucidating the resistance mechanisms of clinically important antibiotics helps in maintaining the clinical efficacy of antibiotics and in the prescription of adequate antibiotic therapy. Although tetracycline and glycylcycline antibiotics are clinically important in combating multidrug-resistant Gram-negative bacterial infections, their mechanisms of resistance are not fully understood. Our research demonstrates that the <i>E. coli</i> PhoPQ two-component system affects resistance to tetracycline and glycylcycline antibiotics by controlling the expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core residue of lipopolysaccharide (LPS). Therefore, our findings highlight a novel resistance mechanism to tetracycline and glycylcycline antibiotics and the physiological significance of LPS core modification in <i>E. coli</i>.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coral high molecular weight carbohydrates support opportunistic microbes in bacterioplankton from an algae-dominated reef. 珊瑚高分子量碳水化合物支持藻类为主的珊瑚礁浮游细菌中的机会微生物。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 DOI: 10.1128/msystems.00832-24
Bianca M Thobor, Andreas F Haas, Christian Wild, Craig E Nelson, Linda Wegley Kelly, Jan-Hendrik Hehemann, Milou G I Arts, Meine Boer, Hagen Buck-Wiese, Nguyen P Nguyen, Inga Hellige, Benjamin Mueller
{"title":"Coral high molecular weight carbohydrates support opportunistic microbes in bacterioplankton from an algae-dominated reef.","authors":"Bianca M Thobor, Andreas F Haas, Christian Wild, Craig E Nelson, Linda Wegley Kelly, Jan-Hendrik Hehemann, Milou G I Arts, Meine Boer, Hagen Buck-Wiese, Nguyen P Nguyen, Inga Hellige, Benjamin Mueller","doi":"10.1128/msystems.00832-24","DOIUrl":"10.1128/msystems.00832-24","url":null,"abstract":"<p><p>High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e., <i>Rhodobacteraceae</i>, <i>Phycisphaeraceae</i>, <i>Vibrionaceae</i>, and <i>Flavobacteriales</i>) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae) <i>per se</i>, may induce the rise of opportunistic microbial taxa.</p><p><strong>Importance: </strong>Dissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of gut microbiome and its metabolites in pancreatitis. 肠道微生物群及其代谢物在胰腺炎中的作用。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-08-30 DOI: 10.1128/msystems.00665-24
Letian Pan, Nuoming Yin, Mingyu Duan, Qixiang Mei, Yue Zeng
{"title":"The role of gut microbiome and its metabolites in pancreatitis.","authors":"Letian Pan, Nuoming Yin, Mingyu Duan, Qixiang Mei, Yue Zeng","doi":"10.1128/msystems.00665-24","DOIUrl":"10.1128/msystems.00665-24","url":null,"abstract":"<p><p>Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as <i>Bifidobacterium</i>, <i>Akkermansia</i>, and <i>Lactobacillus</i>, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eIF6 deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis. eIF6 缺乏能调节肠道微生物群,减少全身炎症,缓解动脉粥样硬化。
IF 5 2区 生物学
mSystems Pub Date : 2024-10-22 Epub Date: 2024-09-03 DOI: 10.1128/msystems.00595-24
Zhenzhen Wang, Shuai Yang, Linglin Tong, Xin Li, Weiyi Mao, Honghua Yuan, Yang Chen, Shenyang Zhang, He Zhang, Renjin Chen
{"title":"<i>eIF6</i> deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis.","authors":"Zhenzhen Wang, Shuai Yang, Linglin Tong, Xin Li, Weiyi Mao, Honghua Yuan, Yang Chen, Shenyang Zhang, He Zhang, Renjin Chen","doi":"10.1128/msystems.00595-24","DOIUrl":"10.1128/msystems.00595-24","url":null,"abstract":"<p><p>Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that <i>eIF6</i> gene knockdown changes the composition of the intestinal flora in the <i>eIF6</i> gene knockdown mouse model. <i>Lactobacillus acidophilus</i> is significantly increased in the model. This study was designed to investigate the role of <i>L. acidophilus</i> in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. <i>ApoE</i><sup>-/-</sup> and <i>ApoE</i><sup>-/-</sup>/<i>eIF6</i><sup>+/-</sup> mice on normal chow diet or a high-fat diet were treated for 16 weeks; <i>eIF6</i> deficiency was evaluated atherosclerosis. <i>ApoE</i><sup>-/-</sup> mice on normal chow diet or a high-fat diet were treated with <i>L. acidophilus</i> by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of <i>eIF6</i>, <i>RNASE3</i>, and <i>RSAD2</i> were notably higher in the patients with CAD than in the healthy individuals. <i>eIF6</i> deficiency altered the composition of gut microbiota. <i>eIF6</i> deficiency reduced the atherosclerotic lesion formation in <i>ApoE</i><sup>-/-</sup>/<i>eIF6</i><sup>+/-</sup> mice compared with the <i>ApoE</i><sup>-/-</sup> mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (<i>L. acidophilus</i>, <i>Ileibacterium</i>, and <i>Bifidobacterium</i>) and metabolic levels significantly had deference in <i>ApoE</i><sup>-/-</sup>/<i>eIF6</i><sup>+/-</sup> mice compared with the <i>ApoE</i><sup>-/-</sup> mice. Correlational studies indicated that <i>L. acidophilus</i> had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. <i>L. acidophilus</i> inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of <i>L. acidophilus</i> against atherosclerosis. <i>eIF6</i> deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. <i>L. acidophilus</i> attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCE<i>eIF6</i> deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic <i>ApoE</i><sup><i>-/-</i></sup> mice. <i>L. acidophilus</i> was reduced in the gut of atherosclerotic <i>ApoE</i><sup><i>-/-</i></sup> mice, but administration of <i>Lactobacillus acidophilus</i> reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信