Yuyang Yue, Guangqi An, Shuxia Cao, Xiangdan Li, Liping Du, Dongyuan Xu, Toufeng Jin, Lan Liu
{"title":"PLEKHA4 upregulation regulates KIRC cell proliferation through β‑catenin signaling.","authors":"Yuyang Yue, Guangqi An, Shuxia Cao, Xiangdan Li, Liping Du, Dongyuan Xu, Toufeng Jin, Lan Liu","doi":"10.3892/mmr.2024.13395","DOIUrl":"https://doi.org/10.3892/mmr.2024.13395","url":null,"abstract":"<p><p>In the present study, pleckstrin homology domain‑containing family A member 4 (PLEKHA4) was identified as being upregulated in renal cell carcinoma, particularly within the kidney renal clear cell carcinoma (KIRC) subtype. The present study conducted bioinformatics analysis, Cell Counting Kit‑8 and cell migration assays, flow cytometry, western blotting and <i>in vivo</i> experiments with the aim of uncovering the role of PLEKHA4 in β‑catenin signaling in KIRC cells. Notably, PLEKHA4 upregulation was revealed to be associated with enhanced cell proliferation, indicating its potential role as an oncogene in KIRC. Mechanistically, knockdown of PLEKHA4 in KIRC cells led to decreased β‑catenin signaling and cyclin D1 expression and the induction of cell cycle arrest at the G1/S phase, suggesting that PLEKHA4 facilitated tumorigenesis through modulation of the Wnt/β‑catenin pathway. PLEKHA4 knockdown also inhibited cell viability, migration and colony formation, further emphasizing its role in cancer progression. Notably, overexpression of PLEKHA4 activated Wnt/β‑catenin signaling, reinforcing its role in promoting β‑catenin nuclear translocation and signaling activity. The present findings suggested that PLEKHA4 could serve as a potential therapeutic target for KIRC; inhibiting PLEKHA4 or modulating Wnt/β‑catenin signaling could provide new avenues for treatment strategies in KIRC.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Li, Wenhui Dang, Ting Jiao, Mengying Zhang, Wei Li
{"title":"Silencing PPAP2C inhibits lung adenocarcinoma migration and invasion via the ERK/JNK pathway.","authors":"Yi Li, Wenhui Dang, Ting Jiao, Mengying Zhang, Wei Li","doi":"10.3892/mmr.2024.13392","DOIUrl":"10.3892/mmr.2024.13392","url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is a leading cause of cancer‑related death due to its aggressive nature and metastatic potential. The present study aimed to explore the expression of phospholipid phosphatase 2 (PPAP2C) in LUAD, and its effect on cell migration and invasion, with a particular focus on its association with the ERK/JNK signaling pathway and epithelial‑mesenchymal transition (EMT). The expression of PPAP2C in LUAD was analyzed using data from The Cancer Genome Atlas database. Pearson's correlation coefficient analysis was used to assess the correlation between PPAP2C and genes such as MAPK1, MAPK3, MAPK8, CDH1, CDH2 and SNAI1. Subsequently, the PPAP2C gene was silenced in A549 and H1299 LUAD cell lines using siRNA vectors, followed by assessments of gene expression, cell migration, invasion and protein interaction using reverse transcription‑quantitative PCR, western blotting, wound healing assay, Transwell invasion assay, molecular docking analysis, co‑immunoprecipitation and immunofluorescence staining. The results showed that PPAP2C was significantly upregulated in LUAD tissues compared with that in normal tissues. In addition, high levels of PPAP2C were significantly correlated with MAPK3, MAPK8, CDH1 and SNAI1. Notably, PPAP2C silencing significantly inhibited cell migration and invasion. Additionally, it reduced the phosphorylation levels of ERK and JNK proteins. PPAP2C showed specific binding sites with ERK1, and co‑precipitated with ERK1 in both A549 and H1299 cells. Furthermore, PPAP2C silencing decreased the expression levels of N‑cadherin and Snail, while increasing E‑cadherin expression, thereby inhibiting EMT. In conclusion, PPAP2C may be highly expressed in LUAD tissues, and could promote cell migration and invasion by activating the ERK/JNK signaling pathway and inducing EMT. These findings provide a novel potential target for the diagnosis and treatment of LUAD.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dental pulp stem cell‑derived extracellular vesicles loaded with hydrogels promote osteogenesis in rats with alveolar bone defects.","authors":"Xin He, Xiao-Yang Chu, Xu Chen, Yu-Lan Xiang, Ze-Lu Li, Chun-Yan Gao, Ying-Yi Luan, Kai Yang, Dong-Liang Zhang","doi":"10.3892/mmr.2024.13393","DOIUrl":"10.3892/mmr.2024.13393","url":null,"abstract":"<p><p>Alveolar bone defects caused by inflammation, trauma and tumors adversely affect periodontal health, causing tooth loosening or dentition defects, thus affecting denture or implant repair. Advancements in tissue engineering technology and stem cell biology have significantly improved the regenerative reconstruction of alveolar bone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells play important roles in exerting their therapeutic effects. Several studies have reported the role of dental pulp stem cells (DPSCs) in bone regeneration, but the regenerative effects of DPSC‑EVs on alveolar bone defects are unclear. In the present study, the osteogenic effects of DPSC‑EVs on Hertwig's epithelial root sheath (HERS) cells <i>in vitro</i> and their osteoinductive effects in an alveolar bone defect rat model were investigated. The results showed that DPSC‑EVs significantly promoted the expression of osteogenic genes, such as runt‑related transcription factor 2 and alkaline phosphatase, and increased the osteogenic differentiation capability of HERS. These findings suggested that transforming growth factor β1 inhibition decreased DPSC‑EV‑induced Smad, MAPK and ERK phosphorylation in HERS. <i>In vivo</i>, DPSC‑EV‑loaded hydrogels were transplanted into the alveolar sockets of Sprague‑Dawley rats and observed for eight weeks. The new bone grew concentrically in the DPSC‑EV or DPSC‑EV‑loaded hydrogel group, with greater bone mass than that in the control group, and the bone volume/total volume increased notably. The results confirmed the osteogenic and osteoinductive effects of DPSC‑EVs and DPSC‑Exo‑loaded hydrogels on alveolar bone defects. Due to their low immunogenicity, high stability, good biocompatibility and osteogenic propensity, DPSC‑EV‑loaded hydrogels are a safe cell‑free therapeutic approach for defective alveolar bone regeneration.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semiquantitative analysis of protein expression in heated rat lens using shotgun proteomics.","authors":"Hiroko Otake, Shuya Masuda, Tetsushi Yamamoto, Yoshiki Miyata, Yosuke Nakazawa, Naoki Yamamoto, Atsushi Taga, Hiroshi Sasaki, Noriaki Nagai","doi":"10.3892/mmr.2024.13391","DOIUrl":"10.3892/mmr.2024.13391","url":null,"abstract":"<p><p>Previous studies have reported that a strong correlation between the estimated cumulative thermal exposure in the crystalline lens and the incidence of nuclear cataracts; however, the precise relationship between temperature and cataracts remains to be fully elucidated. In the present study, the shotgun liquid chromatography/mass spectroscopy‑based global proteomic approach was applied to investigate cataract‑inducing factors in lens cultured at normal (35.0˚C) and slightly warmer (37.5˚C) conditions. In the rat lens, 190 proteins (total) were identified. Of these, 48 proteins (25.3%) were found in lenses cultured at both 35.0˚C and 37.5˚C. Moreover, 85 proteins (44.7%) were unique to lenses cultured at 35.0˚C, while 57 proteins (30.0%) were unique to lenses cultured at 37.5˚C. Protein expression changes in rat lenses cultured at 37.5˚C were examined using a label‑free semiquantitative approach that uses spectral counting and Gene Ontology analysis. Filensin and vimentin protein expression, key factors in maintaining lens structure, were decreased. These findings may serve as a valuable indicator for elucidating the relationship between temperature and the onset of nuclear cataracts.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrin β2 regulates titanium particle‑induced inflammation in macrophages: <i>In vitro</i> aseptic loosening model.","authors":"Yue Shen, Haruna Nakajima, Junfeng Zhu, Weigang Wu","doi":"10.3892/mmr.2024.13390","DOIUrl":"https://doi.org/10.3892/mmr.2024.13390","url":null,"abstract":"<p><p>Aseptic loosening is a major complication of joint replacement surgery, characterized by periprosthetic osteolysis and chronic inflammation at the bone‑implant interface. Cells release chemokines, cytokines and other pro‑inflammatory substances that perpetuate inflammation reactions, while other particle‑stimulated macrophages promote osteoclastic bone resorption and impair bone formation. The present study investigated integrin and inflammatory cytokine expression patterns in RAW 264.7 cells treated with titanium (Ti) particles to elucidate the role of integrins in Ti particle‑mediated inflammatory osteolysis. Assessment was performed by reverse transcription‑quantitative PCR, western blotting, confocal immunofluorescence, flow cytometry and enzyme‑linked immunosorbent assays. Cell migration was evaluated by wound healing assay. It was found that Ti particles significantly induced integrin expression in RAW 264.7 cells, including upregulation of integrins β2 (CD18), aL (CD11a), aM (CD11b) and aX (CD11c). Ti particles also enhanced the expression of Toll‑like receptors (TLRs; TLR1, TLR2, TLR3 and TLR4) and triggered the release of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)‑1β, IL‑8 and IL‑12. Proteomics showed higher expression and activity levels of TLR2 and TLR4, along with their downstream signaling adaptors myeloid differentiation primary response protein 88 (MyD88) and Mal/TIR‑domain‑containing adapter protein (TIRAP), following Ti treatment. Additionally, Ti treatment significantly enhanced the migration rate of RAW 264.7 cells. The present findings indicated that Ti particles regulate the inflammatory response of RAW 264.7 cells in an in vitro aseptic loosening model by activating the TLR/TIRAP/MyD88 signaling pathway.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tangqing Gao, Jingya Luo, Juanning Fan, Gu Gong, Haihong Yang
{"title":"Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review).","authors":"Tangqing Gao, Jingya Luo, Juanning Fan, Gu Gong, Haihong Yang","doi":"10.3892/mmr.2024.13394","DOIUrl":"10.3892/mmr.2024.13394","url":null,"abstract":"<p><p>The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KRAS inhibitors may prevent colorectal cancer metachronous metastasis by suppressing TGF‑β mediated epithelial‑mesenchymal transition.","authors":"Yaoyu Guo, Chuling Hu, Kuntai Cai, Guojie Long, Du Cai, Zhaoliang Yu, Xinxin Huang, Zerong Cai, Peishan Hu, Yufeng Chen, Feng Gao, Xiaojian Wu","doi":"10.3892/mmr.2024.13389","DOIUrl":"10.3892/mmr.2024.13389","url":null,"abstract":"<p><p>In colorectal cancer (CRC), KRAS mutations enhance metachronous metastasis, a condition without prognostic biomarkers or preventive measures. The present study demonstrated that KRAS mutation may be a risk factor for CRC metachronous metastasis through meta‑analysis of public databases. A risk scoring model was constructed using machine learning for predicting metachronous metastasis in KRAS‑mutant CRC. Wound healing and Transwell assay indicated that KRAS inhibitors strongly suppress migration and invasion capabilities of high‑risk CRC cells and these findings were validated through ex vivo organoid and a mouse model of splenic‑liver metastasis. Mechanistically, RNA sequencing, reverse transcription‑quantitative PCR and western blot analyses revealed that KRAS inhibitors suppressed epithelial‑mesenchymal transition (EMT) and transforming growth factor β (TGF‑β) signaling. Notably, addition of TGF‑β1 protein partially reversed the inhibitory effects of KRAS inhibitors on CRC. These results suggested that KRAS inhibitors may prevent CRC metachronous metastasis by downregulating TGF‑β‑mediated EMT, suggesting they can be used prophylactically in high‑risk KRAS‑mutant CRC.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Retracted] Effect of CCL2 siRNA on proliferation and apoptosis in the U251 human glioma cell line.","authors":"Bin Lu, Yue Zhou, Zhongzhou Su, Ai Yan, Peng Ding","doi":"10.3892/mmr.2023.13124","DOIUrl":"10.3892/mmr.2023.13124","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the VEGF western blotting data shown in Fig. 4A on p. 3392 were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published elsewhere prior to its submission to <i>Molecular Medicine Reports</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office never received a reply.The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 16: 3387‑3394, 2017; DOI: 10.3892/mmr.2017.6995].</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiqin Xu, Shijiang Liu, Juan Yang, Renqi Li, Mao Mao, Shanwu Feng, Xian Wang
{"title":"miR‑3120/Hsc70 participates in forced swim stress‑induced mechanical hyperalgesia in rats in an inflammatory state.","authors":"Shiqin Xu, Shijiang Liu, Juan Yang, Renqi Li, Mao Mao, Shanwu Feng, Xian Wang","doi":"10.3892/mmr.2023.13126","DOIUrl":"10.3892/mmr.2023.13126","url":null,"abstract":"<p><p>The heat shock cognate 71 kDa protein (Hsc70) is a stress‑inducible ATPase that can protect cells against harmful stimuli. Transient receptor potential vanilloid 1 (TRPV1) is a well‑documented nociceptor. Notably, Hsc70 can inhibit TRPV1 expression and function, suggesting that Hsc70 may have pain regulation potential. However, the role of Hsc70 in stress‑induced hyperalgesia remains unclear. In the present study, the participation of Hsc70 and its regulator microRNA (miR)‑3120 were investigated in forced swim (FS) stress‑induced mechanical hyperalgesia in rats in an inflammatory state. Complete Freund's adjuvant (CFA) hind paw injection was performed to induce inflammatory pain in rats (CFA rats). Furthermore, in FS + CFA rats, FS stress was performed for 3 days before CFA injection. The levels of Hsc70, miR‑3120 and their downstream molecule TRPV1 were measured in the dorsal root ganglion (DRG) with western blotting, immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and fluorescence <i>in</i> <i>situ</i> hybridization. The results revealed that FS stress significantly exacerbated CFA‑induced mechanical pain. Furthermore, CFA upregulated Hsc70 and TRPV1 expression, which was partially inhibited or further enhanced by FS stress, respectively. In FS + CFA rats, intrathecal injection of a lentiviral vector overexpressing Hsc70 (LV‑Hsc70) could decrease TRPV1 expression and improve the mechanical pain. Additionally, the expression levels of miR‑3120, a regulator of Hsc70, were markedly upregulated on day 3 following FS stress. Finally, miR‑3120 was identified to be colocalized with Hsc70 and expressed in all sizes of DRG neurons. In CFA rats, DRG injection of miR‑3120 agomir to induce overexpression of miR‑3120 resulted in similar TRPV1 expression and behavioral changes as those caused by FS stress, which were abolished in the presence of LV‑Hsc70. These findings suggested that miR‑3120/Hsc70 may participate in FS stress‑induced mechanical hyperalgesia in rats in an inflammatory state, possibly via disinhibiting TRPV1 expression in the DRG neurons.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72014745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Xu, Qingwu Qin, Ye Yao, Lin Yuan, Xizi Du, Kai Zhou, Xinyu Wu, Weijie Wang, Chi Liu
{"title":"Anti‑oxidation effect of Genistein in vascular endothelial cell after H<sub>2</sub>O<sub>2</sub> stress.","authors":"Kun Xu, Qingwu Qin, Ye Yao, Lin Yuan, Xizi Du, Kai Zhou, Xinyu Wu, Weijie Wang, Chi Liu","doi":"10.3892/mmr.2023.13125","DOIUrl":"10.3892/mmr.2023.13125","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic inflammatory disease characterized by increased oxidative injury in vascular endothelial cells. Inhibiting the oxidative damage of vascular endothelial cells can effectively prevent the occurrence and development of AS. Of note, Genistein (GEN; ID no. 5280961) is phytochemical found in legume family which has flavonoid properties with multiple potential biological activities including antioxidant, anti‑inflammatory and anticancer. Antioxidant capacity of GEN has a potential protective effect on vascular endothelial cells after oxidative stress. In the present study, the protective effect of GEN on H2O2‑induced oxidation damage was investigated in human vascular endothelial cells (HUVECs). Following GEN pretreatment of HUVECs, H2O2 was added, and apoptosis was detected by flow cytometry, and the expression of relevant genes and proteins was detected by PCR and westerner blot. The results of the present study revealed that GEN significantly enhanced the cell survival rate and decreased the apoptotic rates of HUVECs after H2O2 stress. Besides, GEN reduced the accumulation of intracellular reactive oxygen species by enhancing activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD) and glutathione peroxidase. Moreover, GEN also inhibited the apoptosis of vascular endothelial cells and enhanced the activation of the nuclear factor erythroid2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1)/SOD pathway. Collectively, it was identified that GEN is an effective antioxidant which can reduce the oxidative damage by H2O2 through the Nrf2/HO‑1/SOD signaling pathway in HUVECs.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}