Molecular Cancer Therapeutics最新文献

筛选
英文 中文
First results of migoprotafib, a potent and highly selective Src homology-2 domain-containing phosphatase 2 (SHP2) inhibitor in patients with advanced solid tumors. migoprotafib是一种有效的、高选择性的Src同源-2结构域磷酸酶2 (SHP2)抑制剂,用于晚期实体瘤患者。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-05 DOI: 10.1158/1535-7163.MCT-24-0466
Melissa L Johnson, Beni B Wolf, Judy S Wang, Alexander Philipovskiy, Geoffrey I Shapiro, Bruno Bockorny, Wei Guo, Jinshan Shen, Kai Yu Jen, MaryBeth LeRose, Tamieka Lauz Hunter, Mahesh Padval, Oleg Schmidt-Kittler, Namrata Bhatia, Sarita Dubey, Julia Suchomel, Johanna C Bendell, Shekeab Jauhari, Jennifer Eng-Wong, Jessica J Lin
{"title":"First results of migoprotafib, a potent and highly selective Src homology-2 domain-containing phosphatase 2 (SHP2) inhibitor in patients with advanced solid tumors.","authors":"Melissa L Johnson, Beni B Wolf, Judy S Wang, Alexander Philipovskiy, Geoffrey I Shapiro, Bruno Bockorny, Wei Guo, Jinshan Shen, Kai Yu Jen, MaryBeth LeRose, Tamieka Lauz Hunter, Mahesh Padval, Oleg Schmidt-Kittler, Namrata Bhatia, Sarita Dubey, Julia Suchomel, Johanna C Bendell, Shekeab Jauhari, Jennifer Eng-Wong, Jessica J Lin","doi":"10.1158/1535-7163.MCT-24-0466","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0466","url":null,"abstract":"<p><p>Src homology-2 domain-containing phosphatase 2 (SHP2) promotes RAS-MAPK signaling and tumorigenesis and is a promising therapeutic target for multiple solid tumors. Migoprotafib is a potent and highly selective SHP2 inhibitor designed for the treatment of RAS-MAPK driven cancers, particularly in combination with other targeted agents. Here we report first-in-human study results of single agent migoprotafib in advanced solid tumor patients. We conducted a phase 1a, open-label, multi-center, dose-escalation and expansion study in adult patients with locally advanced or metastatic solid tumors. The key objectives were to evaluate safety, pharmacokinetics, pharmacodynamics (peripheral blood pERK) and preliminary anti-tumor activity. Fifty-six heavily pre-treated patients were treated with migoprotafib (10-150 mg QD). Migoprotafib had a rapid absorption rate (~0.5-2 hours) with dose-dependent increases in exposure and pathway modulation (pERK changes). The maximum tolerated dose was 100 mg and the recommended phase 2 dose (RP2D) was 60 mg daily (QD) based on safety, pharmacokinetics (PK), pharmacodynamics, and anti-tumor activity. Migoprotafib was generally well tolerated with the most frequent adverse events of diarrhea, peripheral edema, dyspnea, anemia, constipation, fatigue, AST increase and platelet count decrease. Stable disease was observed in 10 patients (18%). Migoprotafib had predictable, dose-dependent PK with an effective half-life that supports QD dosing and demonstrated promising safety, tolerability, and clinical activity at the RP2D. Further clinical testing of migoprotafib in combination with other targeted agents is warranted.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Mechanism of Lurbinectedin's Action and Its Potential in Combination Therapies in Small Cell Lung Cancer. 揭示Lurbinectedin在小细胞肺癌中的作用机制及其联合治疗的潜力。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-05 DOI: 10.1158/1535-7163.MCT-24-0050
Antonio Calles, Emiliano Calvo, Gema Santamaría Nuñez, Federico Costanzo, María José Guillén, Marta Martinez Diez, Aparna Gupta, Carmen Cuevas, Jean-Marc Egly, Pablo Aviles
{"title":"Unveiling the Mechanism of Lurbinectedin's Action and Its Potential in Combination Therapies in Small Cell Lung Cancer.","authors":"Antonio Calles, Emiliano Calvo, Gema Santamaría Nuñez, Federico Costanzo, María José Guillén, Marta Martinez Diez, Aparna Gupta, Carmen Cuevas, Jean-Marc Egly, Pablo Aviles","doi":"10.1158/1535-7163.MCT-24-0050","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0050","url":null,"abstract":"<p><p>Lurbinectedin is a selective inhibitor of oncogenic transcription approved for the treatment of adult patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy. Preclinical data provide evidence for lurbinectedin exerting its actions in a unique manner that involves oncogenic transcription inhibition, DNA damage, reshaping of the tumor microenvironment, and inducing anticancer immunity. Understanding the mechanism of action (MoA) has facilitated the rational combination of lurbinectedin and anticancer therapies with complementary modes of action, in order to obtain synergistic effects that could potentially lead to improved efficacy. This review evaluates the MoA for lurbinectedin and provides an overview of the therapeutic landscape with regards to lurbinectedin combination therapies for the treatment of SCLC based on data from preclinical and clinical studies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical evaluation of an anchored immunotherapy strategy with aluminum hydroxide-tethered interleukin-12 in dogs with advanced malignant melanoma. 氢氧化铝拴系白介素-12锚定免疫治疗晚期恶性黑色素瘤的临床前评价
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-05 DOI: 10.1158/1535-7163.MCT-24-0317
Matheus Moreno Passos Barbosa, Rebecca L Kamerer, Joanna Schmit, Angel J Lopez, Rachel Uyehara, Robert Tighe, Sailaja Battula, Howard L Kaufman, Timothy M Fan
{"title":"Preclinical evaluation of an anchored immunotherapy strategy with aluminum hydroxide-tethered interleukin-12 in dogs with advanced malignant melanoma.","authors":"Matheus Moreno Passos Barbosa, Rebecca L Kamerer, Joanna Schmit, Angel J Lopez, Rachel Uyehara, Robert Tighe, Sailaja Battula, Howard L Kaufman, Timothy M Fan","doi":"10.1158/1535-7163.MCT-24-0317","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0317","url":null,"abstract":"<p><p>Melanoma is an aggressive cancer in dogs involving skin and mucosa similar to people. Anchored immunotherapeutics offer a novel approach to increase intratumoral retention of therapeutic payloads while decreasing systemic exposure, and this strategy can be critically evaluated through a comparative oncology approach. JEN-101 is an anchored canine interleukin-12 (IL-12) tethered to aluminum hydroxide administered by local injection. A Phase I study was conducted to determine the tolerability, activity, and immune responses of JEN-101 in dogs with advanced melanoma. A 3+3 dose escalation design was used to evaluate intratumoral injection of JEN-101 at 1, 3, 10, or 20 μg/kg every three weeks for four cycles. A second course was allowable in the absence of disease progression or toxicity. Peripheral blood, serum, and tumor biopsies were collected at baseline and at pre-specified timepoints for pharmacokinetic and immune analyses, which included serum cytokines, immunohistochemistry, and gene expression assessment. JEN-101 was well tolerated with adverse events being fever, lethargy, and isolated elevated liver enzymes. Five dogs experienced grade 3 events and no grade 4 events were observed. Pharmacokinetic analysis showed a trend towards dose-related Cmax within 8 hours of injection. Responding dogs demonstrated increased systemic interferon-γ and IL-10 AUC levels and local recruitment of CD3+ T cells. Increased pro-inflammatory and antigen processing gene expressions were identified in responding lesions. JEN-101 was well tolerated with evidence of biologic and therapeutic activities. Anchored IL-12 immunotherapy merits further investigation in dogs with melanoma and our approach represents an immune competent model to inform human clinical trials.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Denfivontinib activates effector T-cells through NLRP3-inflammasome, yielding potent anticancer effects by combination with pembrolizumab. Denfivontinib通过nlrp3炎性体激活效应t细胞,与pembrolizumab联合产生有效的抗癌效果。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-05 DOI: 10.1158/1535-7163.MCT-24-0501
Dong Kwon Kim, Chun-Bong Synn, Wongeun Lee, Ha-Ni Jo, Chai Young Lee, Seul Lee, Joon Yeon Hwang, Youngtaek Kim, Seong-San Kang, Sujeong Baek, Kwangmin Na, Seung Min Yang, Mi Hyun Kim, Heekyung Han, Yu Jin Han, Jae Hwan Kim, So Young Park, Young Joon Park, Gang-Taik Lee, Su-Jin Choi, Jie-Ohn Sohn, Sang-Kyu Ye, Jii Bum Lee, Sun Min Lim, Min Hee Hong, Kyoung-Ho Pyo, Byoung Chul Cho
{"title":"Denfivontinib activates effector T-cells through NLRP3-inflammasome, yielding potent anticancer effects by combination with pembrolizumab.","authors":"Dong Kwon Kim, Chun-Bong Synn, Wongeun Lee, Ha-Ni Jo, Chai Young Lee, Seul Lee, Joon Yeon Hwang, Youngtaek Kim, Seong-San Kang, Sujeong Baek, Kwangmin Na, Seung Min Yang, Mi Hyun Kim, Heekyung Han, Yu Jin Han, Jae Hwan Kim, So Young Park, Young Joon Park, Gang-Taik Lee, Su-Jin Choi, Jie-Ohn Sohn, Sang-Kyu Ye, Jii Bum Lee, Sun Min Lim, Min Hee Hong, Kyoung-Ho Pyo, Byoung Chul Cho","doi":"10.1158/1535-7163.MCT-24-0501","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0501","url":null,"abstract":"<p><p>Various combination therapies have been investigated to overcome the limitations of using immune checkpoint inhibitors. However, determining the optimal combination therapy remains challenging. To overcome the therapeutical limitation, we conducted a translational research to elucidate the mechanisms by which AXL inhibition enhances the anti-tumor effects when combined with anti-PD-1 antibody therapy. Herein, we demonstrated improved antitumor effects through combination treatment with denfivontinib and pembrolizumab which resulted in enhanced differentiation into effector CD4+ and CD8+ memory T cells, accompanied by an increase in IFN-γ expression in the YHIM-2004 xenograft model derived from patients with NSCLC. Concurrently, a reduction in the number of immunosuppressive M2 macrophages and myeloid-derived suppressor cells was observed. Mechanistically, denfivontinib potentiated the NOD-like receptor pathway, thereby facilitating the NLRP3 inflammasome formation. This leads to macrophage activation via the NF-kB signaling pathway activation. We have confirmed that the positive interaction between macrophages and T cells arises from the enhanced antigen-presenting machinery of activated macrophages. Furthermore, the observed tumor effects in AXL knock-out mice confirmed that AXL inhibition by denfivontinib enhances the anti-tumor effects, thus opening new avenues for therapeutic interventions aimed at overcoming limitations in immunotherapy. To demonstrate the extent to which our findings reflect clinical results, we analyzed bulk-RNA sequencing data from 21 NSCLC patients undergoing anti-PD-1 immunotherapy. The NLRP3 inflammasome score influenced enhanced immune responses in patient data undergoing anti-PD-1 immunotherapy, suggesting a role for NLRP3 inflammasome in activating immune responses during treatment.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunoproteasome Activation Expands the MHC Class I Immunopeptidome, Unmasks Neoantigens, and Enhances T-cell Anti-Myeloma Activity. 免疫蛋白酶体激活可扩展 MHC I 类免疫肽组,揭示新抗原并增强 T 细胞的抗骨髓瘤活性。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-23-0931
Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Federov, Drew J Adams, James J Driscoll
{"title":"Immunoproteasome Activation Expands the MHC Class I Immunopeptidome, Unmasks Neoantigens, and Enhances T-cell Anti-Myeloma Activity.","authors":"Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Federov, Drew J Adams, James J Driscoll","doi":"10.1158/1535-7163.MCT-23-0931","DOIUrl":"10.1158/1535-7163.MCT-23-0931","url":null,"abstract":"<p><p>Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes. Immunoproteasomes are highly specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma cells. Compound A increased the presentation of individual MHC-I-bound peptides by >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that compound A binds to the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of compound A on antigen presentation. Treatment of multiple myeloma cell lines and patient bone marrow-derived CD138+ cells with compound A increased the anti-myeloma activity of allogenic and autologous T cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T cells reduced the growth of myeloma xenotransplants in NOD/SCID gamma mice. Taken together, our results demonstrate the paradigm shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1743-1760"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical Characterization of ARX517, a Site-Specific Stable PSMA-Targeted Antibody-Drug Conjugate for the Treatment of Metastatic Castration-Resistant Prostate Cancer. 用于治疗转移性钙化抗性前列腺癌的特异性稳定 PSMA 靶向抗体药物共轭物 ARX517 的临床前特征。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-23-0927
Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang
{"title":"Preclinical Characterization of ARX517, a Site-Specific Stable PSMA-Targeted Antibody-Drug Conjugate for the Treatment of Metastatic Castration-Resistant Prostate Cancer.","authors":"Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang","doi":"10.1158/1535-7163.MCT-23-0927","DOIUrl":"10.1158/1535-7163.MCT-23-0927","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard-of-care androgen deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as an mCRPC tumor antigen with overexpression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids into proteins at selected sites, we have developed ARX517, an antibody-drug conjugate composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a noncleavable polyethylene glycol linker and stable oxime conjugation enabled via synthetic amino acid protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice and dose-dependent antitumor activity in both enzalutamide-sensitive and -resistant cell line-derived xenograft and patient-derived xenograft models of prostate cancer. Repeat-dose toxicokinetic studies in nonhuman primates demonstrated that ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a phase I clinical trial (NCT04662580).</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1842-1853"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separable Cell Cycle Arrest and Immune Response Elicited through Pharmacological CDK4/6 and MEK Inhibition in RASmut Disease Models. 在 RASmut 疾病模型中通过药理 CDK4/6 和 MEK 抑制引起可分离的细胞周期停滞和免疫反应。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-24-0369
Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz
{"title":"Separable Cell Cycle Arrest and Immune Response Elicited through Pharmacological CDK4/6 and MEK Inhibition in RASmut Disease Models.","authors":"Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz","doi":"10.1158/1535-7163.MCT-24-0369","DOIUrl":"10.1158/1535-7163.MCT-24-0369","url":null,"abstract":"<p><p>The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TANK-binding kinase 1 inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcomas.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1801-1814"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Imaging Probe and Bispecific Antibody Development Enables In Vivo Targeting of Glypican-3-Expressing Hepatocellular Carcinoma. 集成成像探针和双特异性抗体开发,实现体内靶向治疗表达 glypican-3 的肝细胞癌。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-23-0470
Peiman Habibollahi, Alexey Gurevich, James Z Hui, Kelly Weinfurtner, George McClung, Justin Adler, Michael C Soulen, David E Kaplan, Gregory J Nadolski, Stephen J Hunt, Andrew Tsourkas, Terence P Gade
{"title":"Integrated Imaging Probe and Bispecific Antibody Development Enables In Vivo Targeting of Glypican-3-Expressing Hepatocellular Carcinoma.","authors":"Peiman Habibollahi, Alexey Gurevich, James Z Hui, Kelly Weinfurtner, George McClung, Justin Adler, Michael C Soulen, David E Kaplan, Gregory J Nadolski, Stephen J Hunt, Andrew Tsourkas, Terence P Gade","doi":"10.1158/1535-7163.MCT-23-0470","DOIUrl":"10.1158/1535-7163.MCT-23-0470","url":null,"abstract":"<p><p>Glypican-3 (GPC3) is a proteoglycan with high sensitivity and specificity for hepatocellular carcinoma (HCC). We describe the integrated development and validation of a GPC3-targeting optical imaging probe and T cell-redirecting antibody (TRAB) as a theranostic strategy for the detection and treatment of HCC. A novel TRAB targeting GPC3 on HCC tumor cells and the CD3 T-cell receptor as well as a distinct GPC3-specific optical imaging probe were developed from a short peptide. The efficacy of GPC3/CD3 TRAB was evaluated in vitro using IFNγ release and calcein-AM assays. Patient-derived xenografts were used to assess the in vivo efficacy of GPC3/CD3 TRAB and the GPC3 imaging probe for the detection of GPC3+ HCC. GPC3/CD3 TRAB caused a dose-dependent escalation in IFNγ release from inactive peripheral blood T cells (P = 0.001) and higher tumor-cell lysis (P = 0.01) compared with controls in vitro. Intratumorally injected GPC3/CD3 TRAB resulted in significant prolongation of tumor doubling time in the GPC3+ tumors, with an associated reduction of tumor fluorescent signal from the HiLyte 488-conjugated GPC3-specific peptide on optical imaging. These data demonstrate that HCC cell targeting using a GPC3/CD3 TRAB derived from a small peptide enabled effective T-cell activation and induction of a cytotoxic response toward GPC3+ HCC tumor cells both in vitro and in vivo. GPC3-specific optical imaging enabled the detection of the GPC3+ HCC cells and noninvasive monitoring of tumor response to adoptive immunotherapy. The integrated development of a targeted therapeutic and molecular imaging probe provides a promising paradigm for the development of cancer theranostics.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1815-1826"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of RGT-018: A Potent, Selective, and Orally Bioavailable SOS1 Inhibitor for KRAS-Driven Cancers. 发现 RGT-018:一种针对 KRAS 驱动型癌症的强效、选择性和口服生物可用性 SOS1 抑制剂。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-24-0049
Fei Xiao, Kailiang Wang, Xinjuan Wang, Huijuan Li, Zhilong Hu, Xiaoming Ren, Wei Huang, Teng Feng, Lili Yao, Jing Lin, Chunlai Li, Zhuanzhuan Zhang, Liufeng Mei, Xiaotian Zhu, Wenge Zhong, Zhi Xie
{"title":"Discovery of RGT-018: A Potent, Selective, and Orally Bioavailable SOS1 Inhibitor for KRAS-Driven Cancers.","authors":"Fei Xiao, Kailiang Wang, Xinjuan Wang, Huijuan Li, Zhilong Hu, Xiaoming Ren, Wei Huang, Teng Feng, Lili Yao, Jing Lin, Chunlai Li, Zhuanzhuan Zhang, Liufeng Mei, Xiaotian Zhu, Wenge Zhong, Zhi Xie","doi":"10.1158/1535-7163.MCT-24-0049","DOIUrl":"10.1158/1535-7163.MCT-24-0049","url":null,"abstract":"<p><p>KRAS is the most frequently dysregulated oncogene with a high prevalence in non-small cell lung cancer, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for patients with cancer with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein of Son of Sevenless 1 (SOS1). SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small-molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single-digit nanomoles per liter potency and was highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced antiproliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR, or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combinations with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1703-1716"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatty Acid Derivatization and Cyclization of the Immunomodulatory Peptide RP-182 Targeting CD206high Macrophages Improve Antitumor Activity. 针对 CD206 高巨噬细胞的免疫调节肽 RP-182 的脂肪酸衍生化和环化提高了抗肿瘤活性。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-12-03 DOI: 10.1158/1535-7163.MCT-23-0790
Sitanshu S Singh, Raul Calvo, Anju Kumari, Rushikesh V Sable, Yuhong Fang, Dingyin Tao, Xin Hu, Sarah Gray Castle, Saifun Nahar, Dandan Li, Emily Major, Tino W Sanchez, Rintaro Kato, Xin Xu, Jian Zhou, Liang Liu, Christopher A LeClair, Anton Simeonov, Bolormaa Baljinnyam, Mark J Henderson, Juan Marugan, Udo Rudloff
{"title":"Fatty Acid Derivatization and Cyclization of the Immunomodulatory Peptide RP-182 Targeting CD206high Macrophages Improve Antitumor Activity.","authors":"Sitanshu S Singh, Raul Calvo, Anju Kumari, Rushikesh V Sable, Yuhong Fang, Dingyin Tao, Xin Hu, Sarah Gray Castle, Saifun Nahar, Dandan Li, Emily Major, Tino W Sanchez, Rintaro Kato, Xin Xu, Jian Zhou, Liang Liu, Christopher A LeClair, Anton Simeonov, Bolormaa Baljinnyam, Mark J Henderson, Juan Marugan, Udo Rudloff","doi":"10.1158/1535-7163.MCT-23-0790","DOIUrl":"10.1158/1535-7163.MCT-23-0790","url":null,"abstract":"<p><p>As tumor-associated macrophages (TAM) exercise a plethora of protumor and immune evasive functions, novel strategies targeting TAMs to inhibit tumor progression have emerged within the current arena of cancer immunotherapy. Activation of the mannose receptor 1 (CD206) is a recent approach that recognizes immunosuppressive CD206high M2-like TAMs as a drug target. Ligation of CD206 both induces reprogramming of CD206high TAMs toward a proinflammatory phenotype and selectively triggers apoptosis in these cells. CD206-activating therapeutics are currently limited to the linear, 10mer peptide RP-182, 1, which is not a drug candidate. In this study, we sought to identify a better suitable candidate for future clinical development by synthesizing and evaluating a series of RP-182 analogs. Surprisingly, fatty acid derivative 1a [RP-182-PEG3-K(palmitic acid)] not only showed improved stability but also increased affinity to the CD206 receptor through enhanced interaction with a hydrophobic binding motif of CD206. Peptide 1a showed superior in vitro activity in cell-based assays of macrophage activation which was restricted to CD206high M2-polarized macrophages. Improvement in responses was disproportionally skewed toward improved induction of phagocytosis including cancer cell phagocytosis. Peptide 1a reprogrammed the immune landscape in genetically engineered murine KPC pancreatic tumors toward increased innate immune surveillance and improved tumor control and effectively suppressed tumor growth of murine B16 melanoma allografts.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1827-1841"},"PeriodicalIF":5.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信