Maria Höfner, Katja Eubler, Carola Herrmann, Ulrike Berg, Dieter Berg, Harald Welter, Axel Imhof, Ignasi Forné, Artur Mayerhofer
{"title":"Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction.","authors":"Maria Höfner, Katja Eubler, Carola Herrmann, Ulrike Berg, Dieter Berg, Harald Welter, Axel Imhof, Ignasi Forné, Artur Mayerhofer","doi":"10.1093/molehr/gaad049","DOIUrl":"10.1093/molehr/gaad049","url":null,"abstract":"<p><p>Oxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower. Therefore, we comprehensively evaluated the consequences of atmospheric versus hypoxic (1% O2) conditions for 4 days on human GCs. We found lower cellular RNA and protein levels but unchanged cell numbers at 1% O2, indicating reduced transcriptional and/or translational activity. A proteomic analysis showed that 391 proteins were indeed decreased, yet 133 proteins were increased under hypoxic conditions. According to gene ontology (GO) enrichment analysis, pathways associated with metabolic processes, for example amino acid-catabolic-processes, mitochondrial protein biosynthesis, and steroid biosynthesis, were downregulated. Pathways associated with glycolysis, chemical homeostasis, cellular response to hypoxia, and actin filament bundle assembly were upregulated. In accordance with lower CYP11A1 (a cholesterol side-chain cleavage enzyme) levels, progesterone release was decreased. A proteome profiler, as well as IL-6 and IL-8 ELISA assays, revealed that hypoxia led to increased secretion of pro-inflammatory and angiogenic factors. Immunofluorescence studies showed nuclear localization of hypoxia-inducible factor 1α (HIF1α) in human GCs upon acute (2 h) exposure to 1% O2 but not in cells exposed to 1% O2 for 4 days. Hence, the role of HIF1α may be restricted to initiation of the hypoxic response in human GCs. The results provide a detailed picture of hypoxia-induced phenotypic changes in human GCs and reveal that chronically low O2 conditions inhibit the steroidogenic but promote the inflammatory phenotype of these cells.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Okamoto, W Xiao, H Fukasawa, S Hirata, T Sankai, H Masuyama, J Otsuki
{"title":"Aggregated chromosomes/chromatin transfer: a novel approach for mitochondrial replacement with minimal mitochondrial carryover: the implications of mouse experiments for human aggregated chromosome transfer.","authors":"R Okamoto, W Xiao, H Fukasawa, S Hirata, T Sankai, H Masuyama, J Otsuki","doi":"10.1093/molehr/gaad043","DOIUrl":"10.1093/molehr/gaad043","url":null,"abstract":"<p><p>Nuclear transfer techniques, including spindle chromosome complex (SC) transfer and pronuclear transfer, have been employed to mitigate mitochondrial diseases. Nevertheless, the challenge of mitochondrial DNA (mtDNA) carryover remains unresolved. Previously, we introduced a method for aggregated chromosome (AC) transfer in human subjects, offering a potential solution. However, the subsequent rates of embryonic development have remained unexplored owing to legal limitations in Japan, and animal studies have been hindered by a lack of AC formation in other species. Building upon our success in generating ACs within mouse oocytes via utilization of the phosphodiesterase inhibitor 3-isobutyl 1-methylxanthine (IBMX), this study has established a mouse model for AC transfer. Subsequently, a comparative analysis of embryo development rates and mtDNA carryover between AC transfer and SC transfer was conducted. Additionally, the mitochondrial distribution around SC and AC structures was investigated, revealing that in oocytes at the metaphase II stage, the mitochondria exhibited a relatively concentrated arrangement around the spindle apparatus, while the distribution of mitochondria in AC-formed oocytes appeared to be independent of the AC position. The AC transfer approach produced a marked augmentation in rates of fertilization, embryo cleavage, and blastocyst formation, especially as compared to scenarios without AC transfer in IBMX-treated AC-formed oocytes. No significant disparities in fertilization and embryo development rates were observed between AC and SC transfers. However, relative real-time PCR analyses revealed that the mtDNA carryover for AC transfers was one-tenth and therefore significantly lower than that of SC transfers. This study successfully accomplished nuclear transfers with ACs in mouse oocytes, offering an insight into the potential of AC transfers as a solution to heteroplasmy-related challenges. These findings are promising in terms of future investigation with human oocytes, thus advancing AC transfer as an innovative approach in the field of human nuclear transfer methodology.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliane Trohl, Maria Schindler, Maximilian Buske, Johanna de Nivelle, Alicia Toto Nienguesso, Anne Navarrete Santos
{"title":"Advanced maternal age leads to changes within the insulin/IGF system and lipid metabolism in the reproductive tract and preimplantation embryo: insights from the rabbit model.","authors":"Juliane Trohl, Maria Schindler, Maximilian Buske, Johanna de Nivelle, Alicia Toto Nienguesso, Anne Navarrete Santos","doi":"10.1093/molehr/gaad040","DOIUrl":"10.1093/molehr/gaad040","url":null,"abstract":"<p><p>Reproductive potential in women declines with age. The impact of ageing on embryo-maternal interactions is still unclear. Rabbits were used as a reproductive model to investigate maternal age-related alterations in reproductive organs and embryos on Day 6 of pregnancy. Blood, ovaries, endometrium, and blastocysts from young (16-20 weeks) and advanced maternal age phase (>108 weeks, old) rabbits were analysed at the mRNA and protein levels to investigate the insulin-like growth factor (IGF) system, lipid metabolism, and stress defence system. Older rabbits had lower numbers of embryos at Day 6 of pregnancy. Plasma insulin and IGF levels were reduced, which was accompanied by paracrine regulation of IGFs and their receptors in ovaries and endometrium. Embryos adapted to hormonal changes as indicated by reduced embryonic IGF1 and 2 levels. Aged reproductive organs increased energy generation from the degradation of fatty acids, leading to higher oxidative stress. Stress markers, including catalase, superoxide dismutase 2, and receptor for advanced glycation end products were elevated in ovaries and endometrium from aged rabbits. Embryonic fatty acid uptake and β-oxidation were increased in both embryonic compartments (embryoblast and trophoblast) in old rabbits, associated with minor changes in the oxidative and glycative stress defence systems. In summary, the insulin/IGF system, lipid metabolism, and stress defence were dysregulated in reproductive tissues of older rabbits, which is consistent with changes in embryonic metabolism and stress defence. These data highlight the crucial influence of maternal age on uterine adaptability and embryo development.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138434514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Buratini, Mariabeatrice Dal Canto, Mario Mignini Renzini, Robert Webb
{"title":"Evidence of FSH-ootoxicity from the mouse model: recognition of an important work and a note on the novelty of the hypothesis.","authors":"Jose Buratini, Mariabeatrice Dal Canto, Mario Mignini Renzini, Robert Webb","doi":"10.1093/molehr/gaad045","DOIUrl":"10.1093/molehr/gaad045","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lori R Bernstein, Amelia C L Mackenzie, Duane C Kraemer, Charles L Chaffin, Istvan Merchanthaler
{"title":"Reply: The FSH OoToxicity (FOOT) hypothesis and the 2-Hit hypothesis-new hypotheses that are different from the hypotheses of Buratini et al.","authors":"Lori R Bernstein, Amelia C L Mackenzie, Duane C Kraemer, Charles L Chaffin, Istvan Merchanthaler","doi":"10.1093/molehr/gaad044","DOIUrl":"10.1093/molehr/gaad044","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna L Boss, Lawrence W Chamley, Anna E S Brooks, Joanna L James
{"title":"Human placental vascular and perivascular cell heterogeneity differs between first trimester and term, and in pregnancies affected by foetal growth restriction.","authors":"Anna L Boss, Lawrence W Chamley, Anna E S Brooks, Joanna L James","doi":"10.1093/molehr/gaad041","DOIUrl":"10.1093/molehr/gaad041","url":null,"abstract":"<p><p>Growth-restricted placentae have a reduced vascular network, impairing exchange of nutrients and oxygen. However, little is known about the differentiation events and cell types that underpin normal/abnormal placental vascular formation and function. Here, we used 23-colour flow cytometry to characterize placental vascular/perivascular populations between first trimester and term, and in foetal growth restriction (FGR). First-trimester endothelial cells had an immature phenotype (CD144+/lowCD36-CD146low), while term endothelial cells expressed mature endothelial markers (CD36+CD146+). At term, a distinct population of CD31low endothelial cells co-expressed mesenchymal markers (CD90, CD26), indicating a capacity for endothelial to mesenchymal transition (EndMT). In FGR, compared with normal pregnancies, endothelial cells constituted 3-fold fewer villous core cells (P < 0.05), contributing to an increased perivascular: endothelial cell ratio (2.6-fold, P < 0.05). This suggests that abnormal EndMT may play a role in FGR. First-trimester endothelial cells underwent EndMT in culture, losing endothelial (CD31, CD34, CD144) and gaining mesenchymal (CD90, CD26) marker expression. Together this highlights how differences in villous core cell heterogeneity and phenotype may contribute to FGR pathophysiology across gestation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shweta S Dipali, Chanakarn Suebthawinkul, Joanna E Burdette, Mary Ellen Pavone, Francesca E Duncan
{"title":"Human follicular fluid elicits select dose- and age-dependent effects on mouse oocytes and cumulus-oocyte complexes in a heterologous in vitro maturation assay.","authors":"Shweta S Dipali, Chanakarn Suebthawinkul, Joanna E Burdette, Mary Ellen Pavone, Francesca E Duncan","doi":"10.1093/molehr/gaad039","DOIUrl":"10.1093/molehr/gaad039","url":null,"abstract":"<p><p>Follicular fluid (FF) is a primary microenvironment of the oocyte within an antral follicle. Although several studies have defined the composition of human FF in normal physiology and determined how it is altered in disease states, the direct impacts of human FF on the oocyte are not well understood. The difficulty of obtaining suitable numbers of human oocytes for research makes addressing such a question challenging. Therefore, we used a heterologous model in which we cultured mouse oocytes in human FF. To determine whether FF has dose-dependent effects on gamete quality, we performed in vitro maturation of denuded oocytes from reproductively young mice (6-12 weeks) in 10%, 50%, or 100% FF from participants of mid-reproductive age (32-36 years). FF impacted meiotic competence in a dose-dependent manner, with concentrations >10% inhibiting meiotic progression and resulting in spindle and chromosome alignment defects. We previously demonstrated that human FF acquires a fibro-inflammatory cytokine signature with age. Thus, to determine whether exposure to an aging FF microenvironment contributes to the age-dependent decrease in gamete quality, we matured denuded oocytes and cumulus-oocyte complexes (COCs) in FF from reproductively young (28-30 years) and old (40-42 years) participants. FF decreased meiotic progression of COCs, but not oocytes, from reproductively young and old (9-12 months) mice in an age-dependent manner. Moreover, FF had modest age-dependent impacts on mitochondrial aggregation in denuded oocytes and cumulus layer expansion dynamics in COCs, which may influence fertilization or early embryo development. Overall, these findings demonstrate that acute human FF exposure can impact select markers of mouse oocyte quality in both dose- and age-dependent manners.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72210021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steffen Israel, Julia Seyfarth, Thomas Nolte, Hannes C A Drexler, Georg Fuellen, Michele Boiani
{"title":"Intracellular fraction of zona pellucida protein 3 is required for the oocyte-to-embryo transition in mice.","authors":"Steffen Israel, Julia Seyfarth, Thomas Nolte, Hannes C A Drexler, Georg Fuellen, Michele Boiani","doi":"10.1093/molehr/gaad038","DOIUrl":"10.1093/molehr/gaad038","url":null,"abstract":"<p><p>In oocyte biology, the zona pellucida has long been known to operate three extracellular functions downstream of the secretory pathway, namely, encasing the oocytes in ovarian follicles, mediating sperm-oocyte interaction, and preventing premature embryo contact with oviductal epithelium. The present study uncovers a fourth function that is fundamentally distinct from the other three, being critical for embryonic cell survival in mice. Intriguingly, the three proteins of the mouse zona pellucida (ZP1, ZP2, ZP3) were found abundantly present also inside the embryo 4 days after fertilization, as shown by mass spectrometry, immunoblotting, and immunofluorescence. Contrary to current understanding of the roles of ZP proteins, ZP3 was associated more with the cytoskeleton than with secretory vesicles in the subcortical region of metaphase II oocytes and zygotes, and was excluded from regions of cell-cell contact in cleavage-stage embryos. Trim-away-mediated knockdown of ZP3 in fertilized oocytes hampered the first zygotic cleavage, while ZP3 overexpression supported blastocyst formation. Transcriptome analysis of ZP3-knockdown embryos pointed at defects of cytoplasmic translation in the context of embryonic genome activation. This conclusion was supported by reduced protein synthesis in the ZP3-knockdown and by the lack of cleavage arrest when Trim-away was postponed from the one-cell to the late two-cell stage. These data place constraints on the notion that zona proteins only operate in the extracellular space, revealing also a role during the oocyte-to-embryo transition. Ultimately, these data recruit ZP3 into the family of maternal factors that contribute to developmental competence of mouse oocytes.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyu Liu, Qian Zhu, Yan Pan, Sainan Hao, Zhaoxian Wang, Chuting Cui, Junwei Li, Yueying Huang, Liangjun Xia, Tiancheng Xu, Jie Cheng, Jie Shen, Youbing Xia
{"title":"Electroacupuncture alleviates intrauterine adhesion through regulating autophagy in rats.","authors":"Jingyu Liu, Qian Zhu, Yan Pan, Sainan Hao, Zhaoxian Wang, Chuting Cui, Junwei Li, Yueying Huang, Liangjun Xia, Tiancheng Xu, Jie Cheng, Jie Shen, Youbing Xia","doi":"10.1093/molehr/gaad037","DOIUrl":"10.1093/molehr/gaad037","url":null,"abstract":"<p><p>Autophagy is a well-conserved metabolic system that maintains homeostasis by relying on lysosomal breakdown. The endometrium of patients with intrauterine adhesion (IUA) and an animal model exhibits impaired autophagy. Autophagy is negatively correlated with inflammation. Activation of autophagy can inhibit the inflammatory response, while defects in autophagy will activate the inflammatory response. Here, we studied whether electroacupuncture (EA) inhibits inflammation and promotes endometrial injury repair by activating endometrial autophagy. The IUA animal model was established by mechanical injury plus lipopolysaccharide infection. EA stimulation was applied to the acupoints Guanyuan (CV4), bilateral Sanyinjiao (SP6), and Zusanli (ST36). The results indicated that EA could improve endometrial morphology, attenuate endometrial fibers, and enhance endometrial receptivity in the rat. EA could increase the autophagosomes of endometrial epithelial cells, increase the levels of LC3 and Beclin1, and decrease the level of p62. Additionally, EA may also suppress the nuclear factor kappa-B (NF-κB) signaling pathway and reduce the release of inflammatory factors. Additionally, the effect of EA was comparable to that of the autophagy agonist rapamycin, and the autophagy inhibitor 3-methyladenine reversed the therapeutic effect of EA. Therefore, we assume that EA may facilitate endometrial healing by activating autophagy and reducing NF-κB signal pathway-mediated inflammation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hairui Fan, Dongjie Zhou, Xiaomei Zhang, Min Jiang, Xiang Kong, Tongmin Xue, Lingling Gao, Dan Lu, Chenyue Tao, Liping Wang
{"title":"hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis.","authors":"Hairui Fan, Dongjie Zhou, Xiaomei Zhang, Min Jiang, Xiang Kong, Tongmin Xue, Lingling Gao, Dan Lu, Chenyue Tao, Liping Wang","doi":"10.1093/molehr/gaad036","DOIUrl":"10.1093/molehr/gaad036","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}