Min Yong, Honggui Zhou, Yuhua Zeng, Yuqin Yao, Hongtao Zhu, Jianguo Hu
{"title":"Reduced expression of SMAD7 and consequent reduction of autophagy promotes endometrial stromal-myofibroblast transition and fibrosis.","authors":"Min Yong, Honggui Zhou, Yuhua Zeng, Yuqin Yao, Hongtao Zhu, Jianguo Hu","doi":"10.1093/molehr/gaae036","DOIUrl":"10.1093/molehr/gaae036","url":null,"abstract":"<p><p>Abnormal autophagy and the transforming growth factor-β (TGFβ)-SMAD3/7 signaling pathway play an important role in the development of intrauterine adhesions (IUAs); however, the exact underlying mechanisms remain unclear. In this study, we used IUA patient tissue and SMAD7 conditional knockout mice to detect whether SMAD7 effected IUA via regulation of autophagy and the TGFβ-SMAD3 signaling pathway. We applied a combination of techniques for the detection of p-SMAD3, SMAD7, autophagy and fibrosis-related proteins, autophagic flux, and analysis of the SMAD3 binding site. Endometrial tissue of patients with IUA exhibited lower expression levels of SMAD7. In endometrial stromal cells, silencing of SMAD7 inhibited autophagic flux, whereas overexpressed SMAD7 promoted autophagic flux. This SMAD7-mediated autophagic flux regulates the stromal-myofibroblast transition, and these phenotypes were regulated by the TGFβ-SMAD3 signaling pathway. SMAD3 directly binds to the 3'-untranslated region of transcription factor EB (TFEB) and inhibits its transcription. SMAD7 promoted autophagic flux by inhibiting SMAD3, thereby promoting the expression of TFEB. In SMAD7 conditional knockout mice, the endometria showed a fibrotic phenotype. Simultaneously, autophagic flux was inhibited. On administering the autophagy activator rapamycin, this endometrial fibrosis phenotype was partially reversed. The loss of SMAD7 promotes endometrial fibrosis by inhibiting autophagic flux via the TGFβ-SMAD3 pathway. Therefore, this study reveals a potential therapeutic target for IUA.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasmin Walter, Silvia Colleoni, Giovanna Lazzari, Claudia Fortes, Jonas Grossmann, Bernd Roschitzki, Endre Laczko, Hanspeter Naegeli, Ulrich Bleul, Cesare Galli
{"title":"Maturational competence of equine oocytes is associated with alterations in their “cumulome”","authors":"Jasmin Walter, Silvia Colleoni, Giovanna Lazzari, Claudia Fortes, Jonas Grossmann, Bernd Roschitzki, Endre Laczko, Hanspeter Naegeli, Ulrich Bleul, Cesare Galli","doi":"10.1093/molehr/gaae033","DOIUrl":"https://doi.org/10.1093/molehr/gaae033","url":null,"abstract":"Assisted reproductive technologies are an emerging field in equine reproduction, with species dependent peculiarities, such as the low success rate of conventional in vitro fertilisation. Here, the “cumulome” was related to the developmental capacity of its corresponding oocyte. Cumulus oocyte complexes (COCs) collected from slaughterhouse ovaries were individually matured, fertilised by intracytoplasmic sperm injection (ICSI), and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS) based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable “cumulome”. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15) and blastocyst (BL; n = 19) groups. CV and BL were also analysed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Over-representation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway of oxidative phosphorylation as significantly enriched in NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"23 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rossella Cannarella, Oliver J Rando, Rosita A Condorelli, Sandrine Chamayou, Simona Romano, Antonino Guglielmino, Qiangzong Yin, Tobias Gustafsson Hans, Francesca Mancuso, Iva Arato, Catia Bellucci, Giovanni Luca, Scott D Lundy, Sandro La Vignera, Aldo E Calogero
{"title":"Sperm-carried IGF2: towards the discovery of a spark contributing to embryo growth and development.","authors":"Rossella Cannarella, Oliver J Rando, Rosita A Condorelli, Sandrine Chamayou, Simona Romano, Antonino Guglielmino, Qiangzong Yin, Tobias Gustafsson Hans, Francesca Mancuso, Iva Arato, Catia Bellucci, Giovanni Luca, Scott D Lundy, Sandro La Vignera, Aldo E Calogero","doi":"10.1093/molehr/gaae034","DOIUrl":"10.1093/molehr/gaae034","url":null,"abstract":"<p><p>Spermatozoa have been shown to carry key RNAs which, according to animal evidence, seem to play a role in early embryo development. In this context, a potential key growth regulator is insulin-like growth factor 2 (IGF2), a highly conserved paternally expressed imprinted gene involved in cell growth and proliferation which, recent observations indicate, is expressed in human spermatozoa. We herein hypothesized that sperm IGF2 gene expression and transmission at fertilization is required to support early embryo development. To test this hypothesis, we analyzed sperm IGF2 mRNA levels in the same semen aliquot used for homologous assisted reproductive technique (ART) in infertile couples and correlated these levels with embryo morphokinetics. To find a mechanistic explanation for the observed results, the transcriptomes of blastocysts obtained after injection of Igf2 mRNA in mouse parthenotes were analyzed. Sperm IGF2 mRNA negatively correlated with time of 2-cell stage (t2), t3, t4, t5, and time of expanded blastocyst (tEB), independently of maternal age, body mass index, anti-Müllerian hormone levels, and oocyte quality. An IGF2 mRNA index >4.9 predicted the ability of the embryos to reach the blastocyst stage on Day 5, with a sensitivity of 100% and a specificity of 71.6% (AUC 0.845; P < 0.001). In the animal study, transcriptome analysis demonstrated that 65 and 36 genes were, respectively, up- and down-regulated in the experimental group compared to the control group. These genes belong to pathways that regulate early embryo development, thus supporting the findings found in humans. This study has the potential to challenge the longstanding tenet that spermatozoa are simply vehicles carrying paternal DNA. Instead, it suggests that IGF2 mRNA in healthy spermatozoa provides critical support for early embryo development. Pre-ART sperm-carried IGF2 mRNA levels may be used as a marker to predict the chances of obtaining blastocysts to be transferred for infertile couples undergoing ART.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ximan Rui, Xiaolan Zhang, Xinru Jia, Jian Han, Congjing Wang, Qiqi Cao, Ou Zhong, Jie Ding, Chun Zhao, Junqiang Zhang, Xiufeng Ling, Hong Li, Xiang Ma, Qingxia Meng, Ran Huo
{"title":"Variants in NLRP2 and ZFP36L2, non-core components of the human subcortical maternal complex, cause female infertility with embryonic development arrest.","authors":"Ximan Rui, Xiaolan Zhang, Xinru Jia, Jian Han, Congjing Wang, Qiqi Cao, Ou Zhong, Jie Ding, Chun Zhao, Junqiang Zhang, Xiufeng Ling, Hong Li, Xiang Ma, Qingxia Meng, Ran Huo","doi":"10.1093/molehr/gaae031","DOIUrl":"10.1093/molehr/gaae031","url":null,"abstract":"<p><p>The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adjusting methylation levels with nucleus proportions highlights functional significance of differentially methylated cytosines associated with preeclampsia","authors":"Xiaoguo Zheng, Yanqin Wen, Xinzhi Zhao","doi":"10.1093/molehr/gaae032","DOIUrl":"https://doi.org/10.1093/molehr/gaae032","url":null,"abstract":"Studies on DNA methylation alterations associated with preeclampsia (PE) have improved our understanding of the mechanisms underlying this disorder. However, differentially methylated cytosines (DMCs) have not been adjusted for cell-type heterogeneity, hampering the identification of alterations that drive disease risk. Using a reference-based, cell-type deconvolution approach, we estimated the nuclear proportions of 335 placental samples based on DNA methylation data. We found that the nuclei of total trophoblast lineages accounted for more than 80% of the placental samples, with a significant increase in PE placentas. The nuclear proportions of stromal and Hofbauer cells decreased in PE placentas. Our nuclear proportion estimation reflected previous histological knowledge on the changes in cell type proportions in PE placentas. We corrected 2,125 DMCs associated with early-onset PE for cell-type heterogeneity by adjusting for the nuclear proportions and observed a notable reduction in the association signals, with 145 probes not reaching epigenome-wide significance. After correction, the top 200 significant DMCs were strongly enriched in active enhancers in trophoblast lineages, whereas 145 non-significant probes were enriched in regions with a quiescent state of chromatin. Our results suggest that future epigenetic studies of PE should focus on functional regulatory sequences.","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"409 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Buratini, Mariabeatrice Dal Canto, Mario Mignini Renzini, Robert Webb
{"title":"Reply 1: Correlation between high FSH levels and increased risk of aneuploidy: the origin of the hypothesis.","authors":"Jose Buratini, Mariabeatrice Dal Canto, Mario Mignini Renzini, Robert Webb","doi":"10.1093/molehr/gaae029","DOIUrl":"10.1093/molehr/gaae029","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lori R Bernstein, Amelia C L Mackenzie, Charles L Chaffin, Istvan Merchenthaler
{"title":"Reply 2: Correlation between high FSH levels and increased risk of aneuploidy: the origin of the hypothesis.","authors":"Lori R Bernstein, Amelia C L Mackenzie, Charles L Chaffin, Istvan Merchenthaler","doi":"10.1093/molehr/gaae030","DOIUrl":"10.1093/molehr/gaae030","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation between high FSH levels and increased risk of aneuploidy: the origin of the hypothesis.","authors":"Polat Dursun","doi":"10.1093/molehr/gaae028","DOIUrl":"10.1093/molehr/gaae028","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongwen Wu, Hieu Nguyen, Prianka H Hashim, Ben Fogelgren, Francesca E Duncan, W Steven Ward
{"title":"Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis.","authors":"Hongwen Wu, Hieu Nguyen, Prianka H Hashim, Ben Fogelgren, Francesca E Duncan, W Steven Ward","doi":"10.1093/molehr/gaae026","DOIUrl":"10.1093/molehr/gaae026","url":null,"abstract":"<p><p>EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denise Hoch, Alejandro Majali-Martinez, Julia Bandres-Meriz, Martina Bachbauer, Caroline Pöchlauer, Theresa Kaudela, Ezgi Eyluel Bankoglu, Helga Stopper, Andreas Glasner, Sylvie Hauguel-De Mouzon, Martin Gauster, Silvija Tokic, Gernot Desoye
{"title":"Obesity-associated non-oxidative genotoxic stress alters trophoblast turnover in human first-trimester placentas.","authors":"Denise Hoch, Alejandro Majali-Martinez, Julia Bandres-Meriz, Martina Bachbauer, Caroline Pöchlauer, Theresa Kaudela, Ezgi Eyluel Bankoglu, Helga Stopper, Andreas Glasner, Sylvie Hauguel-De Mouzon, Martin Gauster, Silvija Tokic, Gernot Desoye","doi":"10.1093/molehr/gaae027","DOIUrl":"10.1093/molehr/gaae027","url":null,"abstract":"<p><p>Placental growth is most rapid during the first trimester (FT) of pregnancy, making it vulnerable to metabolic and endocrine influences. Obesity, with its inflammatory and oxidative stress, can cause cellular damage. We hypothesized that maternal obesity increases DNA damage in the FT placenta, affecting DNA damage response and trophoblast turnover. Examining placental tissue from lean and obese non-smoking women (4-12 gestational weeks), we observed higher overall DNA damage in obesity (COMET assay). Specifically, DNA double-strand breaks were found in villous cytotrophoblasts (vCTB; semi-quantitative γH2AX immunostaining), while oxidative DNA modifications (8-hydroxydeoxyguanosine; FPG-COMET assay) were absent. Increased DNA damage in obese FT placentas did not correlate with enhanced DNA damage sensing and repair. Indeed, obesity led to reduced expression of multiple DNA repair genes (mRNA array), which were further shown to be influenced by inflammation through in vitro experiments using tumor necrosis factor-α treatment on FT chorionic villous explants. Tissue changes included elevated vCTB apoptosis (TUNEL assay; caspase-cleaved cytokeratin 18), but unchanged senescence (p16) and reduced proliferation (Ki67) of vCTB, the main driver of FT placental growth. Overall, obesity is linked to heightened non-oxidative DNA damage in FT placentas, negatively affecting trophoblast growth and potentially leading to temporary reduction in early fetal growth.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}