{"title":"A matrix-free 3D in vitro follicle culture system in mice exhibits enhanced oocyte meiotic and developmental competence compared to hydrogel encapsulation.","authors":"Aimilia Zisiadi, Katy Billooye, Ellen Anckaert","doi":"10.1093/molehr/gaaf029","DOIUrl":"10.1093/molehr/gaaf029","url":null,"abstract":"<p><p>In vitro follicle culture (IFC) is an emerging fertility preservation alternative for women and children with cancer. Because two-dimensional (2D) IFC results in oocytes of suboptimal quality in mice and cannot support follicle growth in humans, the search for an optimal three-dimensional (3D) method that preserves the follicular structure is ongoing, and both matrix-free and hydrogel encapsulation systems are being explored. Our aim was to compare several 3D mouse IFC systems, including matrix-free and hydrogel encapsulation approaches. Secondary follicles were cultured for 12 days in a matrix-free non-attachment (NA) system, a Poly-Ethylene-Glycol (PEG) hydrogel, an extracellular-matrix-derived soft hydrogel (ES), and a 2D attachment (AT) control. We assessed follicle growth, survival, hormone secretion, theca cell localization, oocyte meiotic competence and diameter, gene expression in oocytes and cumulus cells, as well as oocyte fertilization potential. Metaphase II oocyte rates were significantly higher in the NA (75 ± 12.4%, n = 79) and AT systems (77 ± 12.6%, n = 109) compared to the ES (33.4 ± 9.5%, n = 40, P < 0.01), while low antral follicle rates from the PEG system led to its exclusion from the comparison. Similarly, following IVF, 2-cell rates were significantly higher in the NA (47.7 ± 17.6%, n = 147, P < 0.01) and AT (40.2 ± 9.7%, n = 132, P < 0.05) systems compared to the ES (23.5 ± 9.3%, n = 63). Furthermore, cumulus cells from the NA condition displayed a more in vivo-like gene expression profile than other conditions. No differences were detected in follicle survival, oocyte diameter, blastocyst rate, or quality between conditions. Lastly, we observed major differences in theca cell localization and hormone secretion levels that require further investigation. Our findings demonstrate the efficiency of the NA system over complex encapsulation methodologies, as it enhanced oocyte meiotic and developmental competence compared to the ES. However, as the study is limited by the lack of human data and the use of Fetal Bovine Serum (FBS) in the culture medium, further research is required to translate our findings to humans.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Yang, Eoin C Whelan, Youyue Zeng, Xinyi Wei, Le Shi, Fan Yang
{"title":"Fibroblast growth factor signaling and spermatogonial stem cell self-renewal.","authors":"Ming Yang, Eoin C Whelan, Youyue Zeng, Xinyi Wei, Le Shi, Fan Yang","doi":"10.1093/molehr/gaaf039","DOIUrl":"10.1093/molehr/gaaf039","url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) serve as the foundational units for all adult male germ cells, playing a critical role in male fertility. These cells are characterized by their unique ability to balance self-renewal and differentiation, ensuring the maintenance of tissue homeostasis while simultaneously producing mature spermatozoa. Recent studies have highlighted the pivotal role of fibroblast growth factor (FGF) signaling in regulating SSC self-renewal, with various FGFs and their corresponding FGF receptors (FGFRs) being implicated in the intricate processes governing SSC homeostasis. This review aims to provide a comprehensive overview of the characteristic expression patterns of FGFs and FGFRs within germ cells and their surrounding somatic cells. In addition, we will conduct in-depth research on the multifaceted functions and regulatory mechanisms of FGF signaling in SSCs and elucidate its potential clinical significance. Understanding these mechanisms not only enhances our knowledge of male reproductive biology but also opens avenues for innovative clinical applications aimed at safeguarding fertility in vulnerable populations.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144835769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth E Marr, Juan S Gnecco, Stacey A Missmer, Shannon M Hawkins, Kevin G Osteen, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Organoids): endometrial organoids as an emerging technology for endometriosis research.","authors":"Elizabeth E Marr, Juan S Gnecco, Stacey A Missmer, Shannon M Hawkins, Kevin G Osteen, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran","doi":"10.1093/molehr/gaaf024","DOIUrl":"10.1093/molehr/gaaf024","url":null,"abstract":"<p><p>The aetiology of endometriosis remains poorly understood. In vitro model systems provide the opportunity to identify the mechanisms driving disease pathogenesis using human cells. Three-dimensional models, particularly organoid systems, have revolutionized how we study epithelial biology and are powerful tools for modelling endometriosis. As an emerging model system, it is important to define protocols and identify the remaining challenges surrounding endometrial organoid culture to increase reproducibility and scientific rigour in endometriosis research. The World Endometriosis Research Foundation (WERF) established an international working group comprised of experts using in vitro approaches for the study of endometriosis. This working group harmonized protocols and documentation of existing and emerging organoid systems to maximize comparison and replication across the field and guide specific research hypotheses testing. This evaluation of organoid protocols, limitations, challenges, and alternative approaches assessed both published and grey literature papers across several disciplines pertinent to endometriosis research. Recommendations for protocol and documentation harmonization are presented, and we created the first-ever decision tree diagram to guide and facilitate the selection of existing models best suited for specific areas of endometriosis research. Rigorous and systematic assessment of emerging organoid systems, recognizing the inferential strengths and limitations of these approaches, is vital for endometriosis research. This comprehensive review of the benefits, limitations, and utilization of organoid models, as well as the consequent integration of protocols and documentation, will contribute to the scientific knowledge base by maximizing the reproducibility, comparability, and interpretation of research studies in endometriosis. Additionally, these newly developed protocols and documentation should serve as a resource for, and facilitate collaboration between, endometriosis investigators using organoids in their research methods.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waleed F A Marei, Inne Xhonneux, Axelle Buydens, Isabel Pintelon, Ben Meulders, Silke Andries, Jo L M R Leroy
{"title":"The impact of maternal diet-induced obesity on offspring primordial oocyte mitochondria at birth and at weaning.","authors":"Waleed F A Marei, Inne Xhonneux, Axelle Buydens, Isabel Pintelon, Ben Meulders, Silke Andries, Jo L M R Leroy","doi":"10.1093/molehr/gaaf044","DOIUrl":"10.1093/molehr/gaaf044","url":null,"abstract":"<p><p>Maternal diet-induced obesity (DIO) may affect adult offspring oocyte quality due to mitochondrial dysfunction. Here, we investigated whether offspring of DIO mothers exhibit mitochondrial abnormalities in their primordial follicle oocytes (PFOs) already at birth and if (further) alterations can be detected at weaning. Female Swiss mice were fed a control or obesogenic diet for 7 weeks before mating and throughout pregnancy and lactation. Offspring ovaries were collected at birth and at weaning. Offspring PFOs were examined by transmission electron microscopy of ovarian sections. Key markers of cell stress (HSP70), mitochondrial biogenesis (PGC-1α), mtDNA replication (TFAM), fusion (MFN2, OPA1), and fission (DRP1) were examined using immunofluorescence and confocal microscopy. Maternal DIO did not alter HSP70 or PGC-1α expression in the PFOs at birth, suggesting that cellular homeostasis and mitochondrial biogenesis were unaffected. TFAM expression was reduced at both time points. DRP1 and cytoplasmic OPA1 expression were reduced at birth, but without ultrastructural changes in mitochondrial shape and density, suggesting that these alterations are regulatory. No inborn mitochondrial structural abnormalities could be detected. In contrast, at weaning, offspring born to and nursed by DIO mothers exhibited a high number of lipid droplets (LDs) in their ovaries, some of which were detectable in the PFOs, while no LDs were detected in the PFOs of the controls. Maternal DIO increased PGC-1α expression, suggesting postnatal effects on PFO mitochondrial biogenesis. MFN2 and OPA1 expression also increased, together with increased mitochondrial elongation and a reduced mitochondrial density. Mitochondrial abnormalities, such as vacuolation, loose inner membranes, the number of detected autophagosomes, and signs of lipophagy, were also significantly increased by maternal DIO at weaning. In conclusion, the oocyte mitochondrial structural abnormalities previously reported in adult offspring from DIO mothers were not detected in the PFOs at birth. Significant changes in primordial follicles linked to maternal DIO were detected only at weaning.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Louise Hull, Raul Gomez, Warren B Nothnick, Ruth Gruemmer, Katherine A Burns, Mohammed Zahied Johan, Isabella R Land, Stacey A Missmer, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Heterologous): heterologous rodent models.","authors":"M Louise Hull, Raul Gomez, Warren B Nothnick, Ruth Gruemmer, Katherine A Burns, Mohammed Zahied Johan, Isabella R Land, Stacey A Missmer, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran","doi":"10.1093/molehr/gaaf022","DOIUrl":"10.1093/molehr/gaaf022","url":null,"abstract":"<p><p>Endometriosis, defined as the growth of endometrial-like tissues outside the uterus, is a common disease among women. Numerous in vivo rodent models of endometriosis have been developed to explore multiple aspects of this poorly understood disease. Heterologous models utilize human endometrial tissues engrafted into immunocompromized mice, while homologous models engraft rodent endometrium into immunocompetent mice or rats. Heterologous models of endometriosis more closely replicate the human disease; however, the murine humoral immune response must be suppressed to prevent rejection of the xenograft tissue. Although the innate immune system remains intact, suppression of the humoral response leads to a markedly different local and systemic immune environments compared to humans. Despite this limitation, experiments using heterologous models have contributed significantly to our understanding of endometriosis establishment and progression, the pre-clinical effectiveness of various therapeutic strategies, and genetically modifiable host factors that contribute to disease. Unfortunately, a lack of harmonization of the models used by different laboratories has impeded the reproducibility and comparability of results between groups. Therefore, the World Endometriosis Research Foundation (WERF) formed an international working group of experts in heterologous models of endometriosis to develop guidelines and protocols that could contribute to unifying experimental approaches across laboratories. Nine critical variables were identified: (i) mouse strain; (ii) human tissue type; (iii) hormonal status of the human tissue donor; (iv) human tissue preparation; (v) method and location of tissue placement; (vi) hormonal status of the recipient animal; (vii) whether or not mice were engrafted with human immune cells; (viii) endpoint assessments; and (ix) number and type of replicates. Herein, we outline important considerations for each major variable and make recommendations for unification of approaches. Widespread adoption of harmonized protocols and implementation of standardized documentation and reporting should further improve the reproducibility and translation of experimental findings both within and between laboratories.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144732280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"'Small but mighty': the Concise Communication comes to MHR.","authors":"Michele Boiani, Francesca E Duncan","doi":"10.1093/molehr/gaaf049","DOIUrl":"https://doi.org/10.1093/molehr/gaaf049","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145200259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine A Burns, Daniëlle Peterse, Caroline B Appleyard, Ronald Chandler, Sun-Wei Guo, Amelia Pearson, Eleonora Persoons, Michael S Anglesio, Michael S Rogers, Kathy L Sharpe-Timms, Joris Vriens, Stacey L McAllister, Kelsi N Dodds, Fiona L Cousins, Lone Hummelshoj, Stacey A Missmer, Kaylon L Bruner-Tran, Erin Greaves
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Homologous): homologous rodent models.","authors":"Katherine A Burns, Daniëlle Peterse, Caroline B Appleyard, Ronald Chandler, Sun-Wei Guo, Amelia Pearson, Eleonora Persoons, Michael S Anglesio, Michael S Rogers, Kathy L Sharpe-Timms, Joris Vriens, Stacey L McAllister, Kelsi N Dodds, Fiona L Cousins, Lone Hummelshoj, Stacey A Missmer, Kaylon L Bruner-Tran, Erin Greaves","doi":"10.1093/molehr/gaaf021","DOIUrl":"10.1093/molehr/gaaf021","url":null,"abstract":"<p><p>In vivo models of endometriosis enable the discovery and preclinical testing of new therapies. Several rodent models of endometriosis exist, but a lack of harmonization impedes reproducibility and comparability of results among investigators. Homologous models are advantageous as they allow the contribution of the immune system/inflammation to be studied. We reviewed published homologous rodent models of endometriosis to develop standard operating procedures ('EPHect-EM-Homologous-SOPs') to guide and facilitate the choice and implementation of these models and harmonize documentation to enhance interpretation and comparability of results. The World Endometriosis Research Foundation (WERF) established an international working group of experts in models of endometriosis and formed a working sub-group to discuss homologous rodent models of endometriosis. A systematic literature review and detailed analysis of protocols was performed. The identified models have advantages and limitations regarding physiological relevance and utility. To harmonize key variables for endometriosis rodent models, the working group focused on species and animal strains, placement of ectopic tissue, uterine tissue volume, method of induction, hormonal status, and uterine tissue 'type'. A decision tree and recommendations on model use were developed for mice and rats to serve as guides for the use of harmonized EPHect-EM-Homologous-SOPs, experimental design, reporting standards, and research of question-dependent key variables. No 'ideal' homologous model of endometriosis was identified. The choice of model for specific research should be guided according to a best-fit strategy. Harmonization of SOPs, documentation, and reporting standards will improve replicability and translational applicability of studies and better highlight where de novo model creation is needed.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelsi N Dodds, Victor Fattori, Nick A Andrews, Caroline B Appleyard, Julie A Christianson, Raul Gomez, Stacy L McAllister, Stacey A Missmer, Jens Nagel, Paulina Nunez-Badinez, Michael S Rogers, Philippa T K Saunders, Miguel A Tejada, Katy Vincent, Lone Hummelshoj, Kaylon L Bruner-Tran, Erin Greaves
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Pain): methods to assess pain behaviour in rodent models of endometriosis.","authors":"Kelsi N Dodds, Victor Fattori, Nick A Andrews, Caroline B Appleyard, Julie A Christianson, Raul Gomez, Stacy L McAllister, Stacey A Missmer, Jens Nagel, Paulina Nunez-Badinez, Michael S Rogers, Philippa T K Saunders, Miguel A Tejada, Katy Vincent, Lone Hummelshoj, Kaylon L Bruner-Tran, Erin Greaves","doi":"10.1093/molehr/gaaf023","DOIUrl":"10.1093/molehr/gaaf023","url":null,"abstract":"<p><p>Pain is a debilitating symptom of endometriosis, and its mechanisms are often explored using rodent models. However, a lack of harmonization amongst models and behavioural measures, in addition to inconsistent reporting, might limit the overall clinical relevance and hinder translation of findings. An additional challenge is accurately linking rodent behaviour to human experiences of endometriosis. This study aimed to: (i) review current measures of pain-associated behaviours used in endometriosis studies; (ii) recommend best practices for each method and their suitability to study endometriosis-associated pain; and (iii) develop internationally agreed-upon standard operating procedures ('EPHect-EM-Pain SOPs'). The World Endometriosis Research Foundation (WERF) assembled an international working group, from which a 'pain behaviour working group' consisting of experts in the field was established. The group used additional consultation from experimental pain model scientists in the broader field. Stimulus-evoked (reflexive) and stimulus-independent (spontaneous) measures are currently used to assess pain-associated behaviours in rodents with experimental endometriosis. All existing methods offer advantages and limitations regarding ethological relevance, output quality, and equipment/training requisites. Internationally standardized pain SOPs as well as summary documentation outlining the minimum and standard requirements for several behavioural measures were developed, as well as consensus recommendations on experimental designs and documentation. To more closely reflect the lived experiences of those with endometriosis, the consortium recommends that, following validation, multiple types of pain-related and/or parallel rodent behaviours (e.g. anxiety) should be quantified as surrogate outcome measures for endometriosis-associated pain. These harmonized methods and documentation for endometriosis research will facilitate essential comparisons among studies, improve translational applicability, and provide a superior holistic view of animal (and thus human) wellbeing.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lone Hummelshoj, Daniëlle Peterse, Kaylon L Bruner-Tran, Stacey A Missmer, Erin Greaves
{"title":"Enhancing collaboration in endometriosis research through the initiative of the World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project (EPHect).","authors":"Lone Hummelshoj, Daniëlle Peterse, Kaylon L Bruner-Tran, Stacey A Missmer, Erin Greaves","doi":"10.1093/molehr/gaaf020","DOIUrl":"10.1093/molehr/gaaf020","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TTBK2 affects sperm quality by regulating the expression of centrosomal proteins and flagellar transporters during spermiogenesis in mice.","authors":"Tianqing Chang, Hua Wu, Xinyue Zhang, Fei Mao, Haijun Bian, Heqi Dai, Hui Luo, Saifei Hu, Ruizhi Feng, Yun Qian","doi":"10.1093/molehr/gaaf030","DOIUrl":"10.1093/molehr/gaaf030","url":null,"abstract":"<p><p>Sperm plays a crucial role in male reproduction, and only a certain number of normal progressive sperm can achieve oocyte fertilization. Revealing the regulatory mechanism of spermatogenesis will help to clarify the pathogenesis of male infertility. Tau tubulin kinase 2 (TTBK2) is a microtubule-associated protein and a serine/threonine protein kinase, which has been shown to participate in cilia formation. Although the formation of cilia and sperm flagella is similar, the specific role of TTBK2 in the formation of sperm flagella remains to be elucidated. In this study, Ttbk2 was found to be predominantly expressed in the mouse testis, and the protein co-localized with α-tubulin in manchette during spermatogenesis. We inhibited the expression of Ttbk2 by intratesticular injection and found a significant increase in the rate of sperm tail deformity and a significant decrease in sperm forward motility. Transmission electron microscopy results revealed that the microtubule structure in both the midpiece and principal piece of the sperm tail exhibited significant disorganization. Furthermore, the mRNA expression levels of centrosomal protein 164 (Cep164) and centrosomal protein 83 (Cep83), as well as intraflagellar transport 88 (Ift88), were found to be downregulated upon Ttbk2 inhibition. Additionally, the expression of CEP164 and IFT88 was also downregulated at the protein level. In conclusion, by increasing the expression of centrosomal proteins and a flagellar transporter, TTBK2 plays an important role in normal formation and functional maintenance of the sperm tail, laying the foundation for the clinical diagnosis and treatment of male reproductive-related gene mutations.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}