{"title":"Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations","authors":"N. Song, M. M. Guo, R. Liu, W. X. Ma","doi":"10.1142/s0217732324500317","DOIUrl":"https://doi.org/10.1142/s0217732324500317","url":null,"abstract":"<p>This study investigates higher-order localized waves for coupled variable-coefficient fourth-order nonlinear Schrödinger equations, which are used to describe the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the seed solutions and Lax pair, the <i>N</i>th-order localized wave solutions are constructed. The interactions of rogue waves with dark–bright solitons are graphically analyzed via numerical simulation. The results are helpful for studying localized wave phenomena in nonlinear optics.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New bound-state solutions and statistical properties of the IMK-GIQYP and IMSK-IQYP models in 3D-NRNCPS symmetries","authors":"Abdelmadjid Maireche","doi":"10.1142/s0217732324500299","DOIUrl":"https://doi.org/10.1142/s0217732324500299","url":null,"abstract":"<p>Within the framework of three-dimensional non-relativistic noncommutative quantum phase-space (3D-NRNCPS) symmetries, we study the three-dimensional deformed Schrödinger equation (3D-DSE) using the improved modified Kratzer plus generalized inverse quadratic Yukawa potential (IMK-GIQYP) and the improved modified screened Kratzer plus inversely quadratic Yukawa potential (IMSK-IQYP) models. For this consideration, the well-known generalized Bopp’s shifts method and standard perturbation theory are used to solve the DSE in the 3D-NRNCPS regime. For the homogeneous (H<sub>2</sub>, N<sub>2</sub> and I<sub>2</sub>) and heterogeneous (CO, CH and NO) diatomic molecules, the new non-relativistic energy equation and eigenfunction for the IMK-GIQYP and the IMSK-IQYP models in the presence of deformation phase-space are obtained to be sensitive to the atomic quantum numbers (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>j</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>s</mi></math></span><span></span> and <i>m</i>), the mixed potential depths (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span><span></span> and <i>V</i>) and (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><mi>q</mi></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>), the screening parameters (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi></math></span><span></span>), and non-commutativity parameters (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Θ</mi><mo stretchy=\"false\">/</mo><mover accent=\"true\"><mrow><mi mathvariant=\"normal\">Φ</mi></mrow><mo accent=\"true\">¯</mo></mover><mo>,</mo><mi>χ</mi><mo stretchy=\"false\">/</mo><mover accent=\"true\"><mrow><mi>χ</mi></mrow><mo accent=\"true\">¯</mo></mover></math></span><span></span> and <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">/</mo><mover accent=\"true\"><mrow><mi>ζ</mi></mrow><mo accent=\"true\">¯</mo></mover></math></span><span></span>) for the IMK-GIQYP and the IMSK-IQYP, respectively. We investigate the newly obtained bound state eigenvalues of the DSE in 3D-NRNCPS symmetries using the IMK-GIQYP and the IMSK-IQYP, with appropriate adjustments made to the improved modified Kratzer potential, improved modified screened Kratzer potential, improved generalized inverse quadratic Yukawa potential model and improved inversely quadratic Yukawa ","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"102 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study of trends of neutron skin thickness and proton radii of mirror nuclei within the framework of covariant density functional theory","authors":"Pankaj Kumar, Sarabjeet Kaur, Virender Thakur, Raj Kumar, Shashi K. Dhiman","doi":"10.1142/s0217732324500226","DOIUrl":"https://doi.org/10.1142/s0217732324500226","url":null,"abstract":"<p>The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, but its accurate measurement is quite challenging. We present predictions for neutron skins and proton radii for light to medium mass nuclei by employing Covariant Density Functional Theory (CDFT) based on density-dependent meson-exchange interaction. Using our microscopic predictions, we find a linear correlation between the neutron skin and the isospin asymmetry. The calculations are also extended to find a linear relationship between proton and neutron radii of mirror nuclei. Using the charge symmetry property of nuclear forces, a correlation between the neutron skin of neutron-rich nuclei and difference between the proton radii of the corresponding mirror pair has also been investigated. The inclusion of ISB term is found to affect the mirror difference charge radii of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mn>8</mn></mrow></msup></math></span><span></span>Ca-<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mn>8</mn></mrow></msup></math></span><span></span>Ni mirror pair.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"70 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neutrino mixing phenomenology: A4 discrete flavor symmetry with type-I seesaw mechanism","authors":"Animesh Barman, Ng. K. Francis, Hrishi Bora","doi":"10.1142/s0217732323502000","DOIUrl":"https://doi.org/10.1142/s0217732323502000","url":null,"abstract":"<p>We study a neutrino mass model with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><span></span> discrete flavor symmetry using a type-I seesaw mechanism. The inclusion of extra flavons in our model leads to deviations from the exact tribimaximal mixing pattern resulting in a nonzero <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msub></math></span><span></span> consistent with the recent experimental results and a sum rule for light neutrino masses is also obtained. In this framework, a connection is established among the neutrino mixing angles-reactor mixing angle (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msub></math></span><span></span>), solar mixing angle (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>2</mn></mrow></msub></math></span><span></span>), and atmospheric mixing angle (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn><mn>3</mn></mrow></msub></math></span><span></span>). This model also allows us a prediction of Dirac CP-phase and Jarlskog parameter <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>J</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The octant of the atmospheric mixing angle <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn><mn>3</mn></mrow></msub></math></span><span></span> occupies the lower octant. Our model prefers Normal Hierarchy (NH) than Inverted Hierarchy (IH). We use the parameter space of our model of neutrino masses to study the neutrinoless double beta decay parameter <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>m</mi></mrow><mrow><mi>β</mi><mi>β</mi></mrow></msub></math></span><span></span>.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"48 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Majorana transformation of the Thomas–Fermi equation demystified","authors":"Abdaljalel Alizzi, Zurab K. Silagadze","doi":"10.1142/s0217732324500160","DOIUrl":"https://doi.org/10.1142/s0217732324500160","url":null,"abstract":"<p>The Majorana transformation makes it possible to reduce the Thomas–Fermi equation to a first-order differential equation. This reduction is possible due to the special scaling property of the Thomas–Fermi equation under homology transformations. Such reductions are well known in the context of stellar astrophysics, where the use of homology-invariant variables has long proved useful. We use homology-invariant variables in the context of the Thomas–Fermi equation to demystify the origin of the otherwise mysterious Majorana transformation.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"300 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examining the influence of hadronic interactions on the directed flow of identified particles in RHIC Beam Energy Scan energies using UrQMD model","authors":"Aswini Kumar Sahoo, Prabhupada Dixit, Md Nasim, Subhash Singha","doi":"10.1142/s0217732324500159","DOIUrl":"https://doi.org/10.1142/s0217732324500159","url":null,"abstract":"<p>The directed flow of identified particles can serve as a sensitive tool for investigating the interactions during initial and final states in heavy ion collisions. This study examines the rapidity distribution (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mi>N</mi><mo stretchy=\"false\">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span>), rapidity-odd directed flow (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>) and its slope (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span>) for <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, p, and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mstyle><mtext mathvariant=\"normal\">p</mtext></mstyle></mrow><mo>̄</mo></mover></math></span><span></span> in Au+Au collisions at different collision centralities and beam energies (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">NN</mtext></mstyle></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, and 39<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV) using the UrQMD model. We investigate the impact of late-stage hadronic interactions on charge-dependent <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and its slope by modifying the duration of the hadronic cascade lifetime (<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>). The energy dependence of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span> for p (<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mstyle><mtext mathvariant=\"normal\">p</mtext></mstyle></mrow><mo>̄</mo></mover></math></span><span></span>) exhibits distinct pattern compared to <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span> and <span><math altimg","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya, A. M. Nagaraja
{"title":"Improved empirical formula for spontaneous fission half-lives","authors":"A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya, A. M. Nagaraja","doi":"10.1142/s0217732324500184","DOIUrl":"https://doi.org/10.1142/s0217732324500184","url":null,"abstract":"<p>The spontaneous fission (SF) half-lives of all 96 experimentally accessible SF emitters were examined. The SF emitters are classified as even <i>Z</i>-even <i>A</i>, odd <i>Z</i>-even <i>A</i>, odd <i>Z</i>-odd <i>A</i> and even <i>Z</i>-odd <i>A</i>. A plot of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>log</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mi>δ</mi><mi>m</mi></math></span><span></span> versus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">∕</mo><mi>A</mi></math></span><span></span> demonstrates a straight line, where <i>k</i> is variable. The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo>log</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msub></math></span><span></span> values produced in this study are compared to all other semi-empirical relations such as Ren <i>et al.</i>, [<i>Nucl. Phys. A</i> <b>759</b>, 64 (2005)], Xu <i>et al.</i>, [<i>Phys. Rev. C</i> <b>78</b>, 044329 (2008)], Santhosh <i>et al.</i>, [<i>Nucl. Phys. A</i> <b>832</b>, 220 (2010)] and Karpov <i>et al.</i>, [<i>Int. J. Mod. Phys. E</i> <b>21</b>, 1250013 (2012)] available in the literature. When compared to earlier semi-empirical equations accessible in the literature, the new formula shows reduced uncertainty in standard deviation in the case of Odd <i>Z</i>-even <i>A</i> and even <i>Z</i>-Odd <i>A</i> nuclei. When compared to other sets of combinations (even <i>Z</i>-even <i>A</i>, and odd <i>Z</i>-odd <i>A</i> nuclei), this study more accurately reproduces the experimental SF half-lives for even <i>Z</i>-odd <i>A</i> and odd <i>Z</i>-even <i>A</i> nuclei with smaller <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span> in the atomic number range 9<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>1</mn></math></span><span></span>12 and mass number range 23<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>2</mn></math></span><span></span>84.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"14 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Min Shi, Pan Tian, Shou Wang, Yu-Guang Yang, Yi-Hua Zhou
{"title":"Quantum hash function based on continuous quantum walks","authors":"Wei-Min Shi, Pan Tian, Shou Wang, Yu-Guang Yang, Yi-Hua Zhou","doi":"10.1142/s0217732323501894","DOIUrl":"https://doi.org/10.1142/s0217732323501894","url":null,"abstract":"<p>A method of constructing a quantum hash function (QHF) based on continuous-time quantum walk is proposed, in which the time of quantum walk is controlled by the binary string message, namely, a binary string message as the input of the constructed QHF and the probability value of finally walking to the nodes on the cycle is used as the output of the QHF. Numerical simulation and performance analysis show that our QHF has obvious advantages in the efficiency of the QHF compared with the existing QHF based on the discrete-time quantum walk, that is, the efficiency of our scheme is nearly 4 times faster in computing the hash value of the same size file compared with the most efficient scheme. Besides, the QHF has also better collision resistance compared with the existing QHF based on the discrete-time quantum walk.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"52 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probing the speed of gravitational waves beyond general relativity from CMB observations","authors":"Jun Li, Guang-Hai Guo, Yongcan Zu","doi":"10.1142/s0217732324500196","DOIUrl":"https://doi.org/10.1142/s0217732324500196","url":null,"abstract":"<p>In modified gravity theories, gravitational waves can propagate differently from general relativity and their propagating speed can be either constant or acquire a time dependence. We consider the constant models first and update the constraints on cosmological parameters from the combinations of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Planck</mtext></mstyle><mn>1</mn><mn>8</mn><mo>+</mo><mstyle><mtext mathvariant=\"normal\">BK</mtext></mstyle><mn>1</mn><mn>8</mn></math></span><span></span> datasets. In this case, excluding superluminal propagation, we obtain the lower limit on the speed <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>></mo><mn>0</mn><mo>.</mo><mn>2</mn><mn>2</mn></math></span><span></span> at 95% C.L. A non-trivial propagating speed impacts the amplitude of tensor spectrum by adding a factor <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msubsup></math></span><span></span>, where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> is the tensor tilt. We find that the value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> has positive correlation with the tensor-to-scalar ratio and anti-correlation with the factor <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msubsup></math></span><span></span>. Then we explore a time-dependent speed which contains the resonance of the stochastic gravitational wave background. If the speed of gravitational waves oscillates at primordial era, resonance continuously enhances stochastic gravitational wave background which produces observable effects on tensor power spectra. We derive the constraints on the amplitude of oscillatory speed and tensor parameters from the combinations of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Planck18</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">BK18</mtext></mstyle></math></span><span></span> datasets. The numerical results show that the speed resonance of the stochastic gravitational wave background is sensitive to CMB observations.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The accelerated expansion in F(G,TμνTμν) gravity","authors":"Mihai Marciu, Dana Maria Ioan","doi":"10.1142/s0217732324500275","DOIUrl":"https://doi.org/10.1142/s0217732324500275","url":null,"abstract":"<p>In this paper, the basic Einstein–Hilbert cosmological model is extended by adding a new functional <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> in the fundamental action, encoding specific geometrical effects due to a nontrivial coupling with the Gauss–Bonnet invariant (<i>G</i>), and the energy–momentum squared term (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup></math></span><span></span>). After obtaining the corresponding gravitational field equations for the specific decomposition where <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo><mo>=</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>g</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, we have explored the physical features of the cosmological model by considering the linear stability theory, an important analytical tool in the cosmological theory which can reveal the dynamical characteristics of the phase space. The analytical exploration of the corresponding phase space structure revealed that the present model can represent a viable dark energy model, with various stationary points where the effective equation of state corresponds to a de-Sitter epoch, possible explaining the early and late time acceleration of the Universe.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"33 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}