Daniela Rosendo-Silva , Eduardo Lopes , Tamaeh Monteiro-Alfredo , Inês Falcão-Pires , Hans Eickhoff , Sofia Viana , Flávio Reis , Ana Salomé Pires , Ana Margarida Abrantes , Maria Filomena Botelho , Raquel Seiça , Paulo Matafome
{"title":"Corrigendum to “The adipose tissue melanocortin 3 receptor is targeted by ghrelin and leptin and may be a therapeutic target in obesity” [Mol. Cell. Endocrinol. 594 (2024), 112367]","authors":"Daniela Rosendo-Silva , Eduardo Lopes , Tamaeh Monteiro-Alfredo , Inês Falcão-Pires , Hans Eickhoff , Sofia Viana , Flávio Reis , Ana Salomé Pires , Ana Margarida Abrantes , Maria Filomena Botelho , Raquel Seiça , Paulo Matafome","doi":"10.1016/j.mce.2024.112410","DOIUrl":"10.1016/j.mce.2024.112410","url":null,"abstract":"","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112410"},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen Liu , Limin Zhang , Siqi Li , Ruixi Zhou , Wenbo Wu , Yumei Liu , Ming Shu , Wanwei Li , Xiaohong Li
{"title":"Resveratrol attenuates Cr(VI)-induced disorders of glycolipid metabolism by regulating HNF1b/GPX1 in mice","authors":"Chen Liu , Limin Zhang , Siqi Li , Ruixi Zhou , Wenbo Wu , Yumei Liu , Ming Shu , Wanwei Li , Xiaohong Li","doi":"10.1016/j.mce.2024.112408","DOIUrl":"10.1016/j.mce.2024.112408","url":null,"abstract":"<div><div>Epidemiological studies have indicated that exposure to hexavalent chromium (Cr(VI)) is associated with increased morbidity in the population. Resveratrol (Res) is a polyphenolic compound known for its role in mitigating oxidative stress and inflammation. In this study, we investigated the effects of resveratrol on Cr(VI)-induced disorders of glycolipid metabolism and elucidated its mechanisms. Male C57BL/6 mice were exposed to resveratrol and Cr(VI) for 45 days. Cr(VI) exposure led to elevated blood glucose levels, impaired glucose tolerance and insulin resistance, oxidative and inflammatory responses, and alterations in glycolipid metabolism molecules such as PCK1 and SREBP1, along with inhibition of HNF1b and GPX1. Resveratrol pretreatment increased the expression of HNF1b and GPX1, reduced oxidative and inflammatory responses, and ultimately ameliorated Cr(VI)-induced glycolipid metabolism disorders. These findings suggest potential new targets for the prevention and treatment of dysglycolipidosis.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112408"},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Batoul Abi Zamer , Jasmin Shafarin , BasmaM. Sharaf , HamzaM. Al Hroub , Nelson C. Soares , Mohammad H. Semreen , Mawieh Hamad , Jibran Sualeh Muhammad
{"title":"Estrogen-mediated inhibition of purine metabolism and cell cycle arrest as a novel therapeutic approach in colorectal cancer","authors":"Batoul Abi Zamer , Jasmin Shafarin , BasmaM. Sharaf , HamzaM. Al Hroub , Nelson C. Soares , Mohammad H. Semreen , Mawieh Hamad , Jibran Sualeh Muhammad","doi":"10.1016/j.mce.2024.112414","DOIUrl":"10.1016/j.mce.2024.112414","url":null,"abstract":"<div><div>Purine metabolism is upregulated in various cancers including colorectal cancer (CRC). While previous work has elucidated the role of estrogen (E2) in metabolic reprogramming and ATP production, the effect of E2 on purine metabolism remains largely unknown. Herein, the impact of E2 signalling on purine metabolism in CRC cells was investigated using metabolome and transcriptome profiling of cell extracts derived from E2-treated HCT-116 cells with intact or silenced estrogen receptor alpha (ERα). Purine metabolic pathway enrichment analysis showed that 27 genes in the <em>de novo</em> purine synthesis pathway were downregulated in E2-treated CRC cells. Downstream consequences of E2 treatment including the induction of DNA damage, cell cycle arrest, and apoptosis were all shown to be ERα-dependent. These findings demonstrate, for the first time, that E2 exerts a significant anti-growth and survival effect in CRC cells by targeting the purine synthesis pathway in a ERα-dependent manner, meriting further investigation of the therapeutic utility of E2 signalling in CRC.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"596 ","pages":"Article 112414"},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PTH-dependent stabilization of RANKL mRNA is associated with increased phosphorylation of the KH-type splicing regulatory protein","authors":"Gang-Qing Yao, Meiling Zhu, Karl Insogna","doi":"10.1016/j.mce.2024.112412","DOIUrl":"10.1016/j.mce.2024.112412","url":null,"abstract":"<div><div>Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.4-fold elevation in RANKL mRNA expression in UAMS-32P cells, despite prior inhibition of cellular transcription by thiophosphoryl (TPL). RANKL mRNA, like other TNF family members, contains AU-Rich Elements (AREs) in the 3’ UTR. AU-Rich Element Binding Proteins (ABPs including KSRP, TTP, AUF1 and HuR) bind to AREs and regulate mRNA stability. There was significantly more KSRP bound to RANKL mRNA than any of the other ABPs. PTH did not increase the amount of ABPs bound to the RANKL transcript. However, the level of cellular phosphorylated KSRP was significantly increased in UAMS-32P cells pre-treated with TPL followed by PTH exposure, compared to cells treated with vehicle following TPL. The extent of phosphorylation of cellular AUF1, HuR, and TTP did not increase with PTH treatment. There were no significant changes in the cellular content of total Pin1 and phospho-Pin1 protein with PTH treatment. We conclude that increases in cellular phospho-KSRP following PTH treatment, together with fact that the total amount of the KSRP bound to the RANKL mRNA did not change with PTH-treatment, may indicate that phospho-KSRP plays some role in stabilizing the RANKL transcript.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112412"},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Søren Madsen , A. Augusto Peluso , Caio Y. Yonamine , Lars R. Ingerslev , Morten Dall , Patricia S.S. Petersen , Kaja Plucinska , Marta Pradas-Juni , Roger Moreno-Justicia , Alba Gonzalez-Franquesa , Kurt Højlund , Jan-Wilhelm Kornfeld , Brice Emanuelli , Sara G. Vienberg , Jonas T. Treebak
{"title":"Rapid downregulation of DICER is a hallmark of adipose tissue upon high-fat diet feeding","authors":"Søren Madsen , A. Augusto Peluso , Caio Y. Yonamine , Lars R. Ingerslev , Morten Dall , Patricia S.S. Petersen , Kaja Plucinska , Marta Pradas-Juni , Roger Moreno-Justicia , Alba Gonzalez-Franquesa , Kurt Højlund , Jan-Wilhelm Kornfeld , Brice Emanuelli , Sara G. Vienberg , Jonas T. Treebak","doi":"10.1016/j.mce.2024.112413","DOIUrl":"10.1016/j.mce.2024.112413","url":null,"abstract":"<div><div>Adipose tissue regulates whole-body energy balance and is crucial for metabolic health. With energy surplus, adipose tissue expands, which may lead to local areas of hypoxia and inflammation, and consequently impair whole-body insulin sensitivity. We report that DICER, a key enzyme for miRNA maturation, is significantly lower in abdominal subcutaneous white adipose tissue of men with obesity compared with men with a lean phenotype. Furthermore, DICER is profoundly downregulated in mouse adipose tissue and liver within the first week on a high-fat diet (HFD), and remains low after prolonged HFD feeding. Downregulation of DICER in mice occurs in both mature adipocytes and stromal vascular cells. Mechanistically, chemically induced hypoxia <em>in vitro</em> shows DICER degradation via interaction with hypoxia-inducible factor 1-α (HIF1α). Moreover, DICER and HIF1α interact in brown adipose tissue post-HFD which may signal for DICER degradation. Finally, RNA sequencing reveals a striking time-dependent downregulation of total miRNA content in mouse subcutaneous adipose tissue after HFD feeding. Collectively, HFD in mice reduces adipose tissue DICER, likely due to hypoxia-induced interaction with HIF1α during tissue expansion, and this significantly impacts miRNA content.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112413"},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transforming growth factor β-2 is rhythmically expressed in both WT and BMAL1-deficient hypothalamic neurons and regulates neuropeptide Y: Disruption by palmitate","authors":"Aws F. Mustafa , Wenyuan He , Denise D. Belsham","doi":"10.1016/j.mce.2024.112411","DOIUrl":"10.1016/j.mce.2024.112411","url":null,"abstract":"<div><div>The hypothalamus contains neuropeptide Y (NPY)-expressing neurons that control food intake and regulate energy homeostasis. During the development of obesity, neuroinflammation occurs in the hypothalamus before peripheral tissues, but the cytokines involved have not been thoroughly studied. Among them is the transforming growth factor beta (TGF-β) family of cytokines. Herein, we demonstrate that <em>Tgfb 1–3</em>, as well as its receptors <em>Tgfbr1</em> and <em>Tgfbr2</em>, exhibit high levels of expression in the whole hypothalamus, primary hypothalamic culture, and immortalized hypothalamic neurons. Of interest, only <em>Tgfb2</em> mRNA displays circadian expression in the immortalized hypothalamic neurons and maintains this rhythmicity in BMAL1-KO-derived hypothalamic neurons that are deficient of inherent clock gene rhythmicity. Although BMAL2 may serve as an alternative rhythm generation mechanism in the absence of BMAL1, its knockdown did not affect <em>Tgfb2</em> expression. Treatment of immortalized NPY-expressing neurons with TGF-β2 upregulates the core circadian oscillators <em>Bmal1</em> and <em>Nr1d1</em>, and importantly, also <em>Npy</em> mRNA expression. With obesity, the hypothalamus is exposed to elevated levels of palmitate, a saturated fatty acid that promotes neuroinflammation by upregulating pro-inflammatory cytokines. Palmitate treatment disrupts the expression of TGF-β signaling components, increases BMAL1 binding to the <em>Tgfb2</em> 5’ regulatory region, and upregulates <em>Npy</em> mRNA, whereas antagonizing TGFBRI attenuates the upregulation of <em>Npy</em>. These results suggest that hypothalamic neuronal TGF-β2 lies at the intersection of circadian rhythms, feeding neuropeptide control, and neuroinflammation. A better understanding of the underlying mechanisms that link nutrient excess to hypothalamic dysfunction is critical for the development of effective prevention and treatment strategies.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112411"},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Wang , Xiaohai Xie , Qiuyan Chen , Yulin Chen , Xiaohui Xu , Tao Liang
{"title":"Puerarin reduces diabetic nephropathy-induced podocyte pyroptosis by modulating the SIRT1/NLRP3/caspase-1 pathway","authors":"Lu Wang , Xiaohai Xie , Qiuyan Chen , Yulin Chen , Xiaohui Xu , Tao Liang","doi":"10.1016/j.mce.2024.112409","DOIUrl":"10.1016/j.mce.2024.112409","url":null,"abstract":"<div><h3>Background</h3><div>Chronic kidney inflammation and podocyte injury are key pathological features of Diabetic Nephropathy (DN). Puerarin has been shown to inhibit podocyte pyroptosis and provide renal protection, although its molecular mechanism remains unclear.</div></div><div><h3>Methods</h3><div>The effects and mechanisms of puerarin on podocyte pyroptosis were investigated in a DN mouse model. In vivo, a DN model was established using streptozotocin (STZ) and treated with puerarin, a SIRT1 agonist, or a SIRT1 inhibitor. In vitro, a podocyte pyroptosis model was induced under high glucose (HG) conditions, and lentivirus transfection was used to either silence or overexpress SIRT1. Techniques including ELISA, transmission electron microscopy, flow cytometry, PCR, and Western blotting were employed to explore the molecular mechanisms by which puerarin inhibits podocyte pyroptosis.</div></div><div><h3>Results</h3><div>The study showed that SIRT1 expression was significantly downregulated in STZ-induced DN mice and HG-induced MPC-5 cell pyroptosis models. Overexpression of SIRT1 decreased the secretion of inflammatory factors, reduced reactive oxygen species (ROS) release, improved podocyte injury, restored podocyte function, and inhibited the expression of the NLRP3 inflammasome and its downstream factors. Furthermore, puerarin increased SIRT1 expression in DN mice and HG-treated MPC-5 cells, inhibited the activation of the NLRP3/Caspase-1 pathway, reduced podocyte pyroptosis, and alleviated renal inflammatory damage.</div></div><div><h3>Conclusion</h3><div>These findings suggest that puerarin may inhibit podocyte pyroptosis, reduce podocyte injury, and mitigate renal inflammatory damage by modulating the SIRT1/NLRP3/Caspase-1 pathway.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112409"},"PeriodicalIF":3.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Liu , Kezhou Zhu , Yunying Huang , Weilai Ye , Jun Wu
{"title":"PRDM16 in thermogenic adipocytes mediates an inter-organ protective signaling against alcohol-associated liver disease","authors":"Shanshan Liu , Kezhou Zhu , Yunying Huang , Weilai Ye , Jun Wu","doi":"10.1016/j.mce.2024.112407","DOIUrl":"10.1016/j.mce.2024.112407","url":null,"abstract":"<div><div>Alcohol-associated liver disease (ALD) is one of the major chronic liver diseases and despite the dire clinical needs and extensive research efforts, no effective therapies are available for late-stages of ALD except for liver transplantation. Adipose tissue dysfunction has been implicated in the progression of ALD. Furthermore, it has been previously suggested that thermogenic fat can be activated after alcohol consumption. In this study, increased thermogenic gene expression was detected in both classical brown adipose tissue and beige adipocytes in mice that were given alcohol challenges even when housed at thermoneutrality. In particular, higher expression level of <em>Prdm16</em>, the key transcriptional co-component for beige fat function, was observed in the subcutaneous fat of mice after alcohol challenges. The objective of the present study is to explore the functional significance of adipocyte PRDM16 in the context of ALD. Even though <em>Prdm16</em> adipocyte-specific-deleted mice (<em>Prdm16</em>-adKO) did not show liver defects at the basal level, following two different alcohol challenge regimens, exacerbated ALD phenotypes were observed in <em>Prdm16</em>-adKO mice compared to that of the control <em>Prdm16</em> <sup>fl/fl</sup> mice. Mechanistic investigation suggests that adipose dysfunction after alcohol abuse, including alcohol-induced changes in adipose lipolytic activity, fatty acid oxidation and adipokine levels, may render the worsened ALD phenotype in <em>Prdm16</em>-adKO mice. These results indicate PRDM16-mediated signaling in fat plays a protective role against liver injury caused by alcohol abuse, suggesting it may represent a potential therapeutic target against ALD.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112407"},"PeriodicalIF":3.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NLRP3 inhibitor alleviates glycemic variability-induced cognitive impairment in aged rats with type 2 diabetes mellitus","authors":"Wei Yang, Si-Cong Si, Jing Li, Yi-Xin Ma, Huan Zhao, Jia Liu","doi":"10.1016/j.mce.2024.112406","DOIUrl":"10.1016/j.mce.2024.112406","url":null,"abstract":"<div><div>Glycemic variability (GV) markedly exacerbates cognitive impairment in elderly patients with type 2 diabetes mellitus (T2DM), in part through chronic inflammation. This study investigated the therapeutic efficacy of the NLRP3 inflammasome inhibitor MCC950 in mitigating GV-induced cognitive impairment in an aged rat model of T2DM. Aged Sprague-Dawley rats with induced T2DM were subjected to GV conditions, and the effects of MCC950 were evaluated through measurement of body weight, blood glucose, lipid profiles, insulin level, inflammatory markers, and cognitive function. Transcriptomic analysis was performed on the hippocampus and prefrontal cortex. Treatment with MCC950 significantly alleviated weight loss and hyperglycemia in the GV group compared with the control group. MCC950 also reduced the levels of cholesterol, triglycerides, and pro-inflammatory markers (interleukin-1β (IL-1β) and interleukin-18 (IL-18)). Most notably, MCC950 improved spatial learning and memory retention in the GV group. Immunohistochemical analysis indicated a reduction in inflammasome activation and an increase in the expression level of the neuronal marker NeuN in the hippocampus. Transcriptomic analysis revealed that MCC950 altered neuroactive ligand-receptor interaction pathways in the hippocampus and influenced receptor binding and cell adhesion processes in the prefrontal cortex. These findings validated the efficacy of NLRP3 inhibitor in mitigating GV-induced cognitive impairment in elderly rats with T2DM and provided the basis for subsequent clinical studies exploring the broader potential of NLRP3-targeted interventions in addressing diabetes-associated cognitive impairment.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"595 ","pages":"Article 112406"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}