Melatonin Research最新文献

筛选
英文 中文
Melatonin as a promising agent alleviating endocrine deregulation and concurrent cardiovascular dysfunction: a review and future prospect 褪黑素作为一种有望缓解内分泌失调和并发心血管功能障碍的药物:综述与未来展望
Melatonin Research Pub Date : 2024-04-20 DOI: 10.32794/mr112500166
Swaimanti Sarkar, A. Chattopadhyay, Debasish Bandyopadhyay
{"title":"Melatonin as a promising agent alleviating endocrine deregulation and concurrent cardiovascular dysfunction: a review and future prospect","authors":"Swaimanti Sarkar, A. Chattopadhyay, Debasish Bandyopadhyay","doi":"10.32794/mr112500166","DOIUrl":"https://doi.org/10.32794/mr112500166","url":null,"abstract":"Endocrine modulation of various growth and survival mechanisms is at the helm of cellular homeostasis and impaired endocrine balance may potentially galvanize cardiovascular health to go haywire. Melatonin, an effective antioxidant and multipotent hormone has preponderant influence on the activities of several endocrine factors including growth hormones, thyroid hormones, gastro-intestinal hormones, and those controlling reproductive and metabolic functions. Many of these hormones tightly regulate cardiovascular functions while the mammalian heart has its own endocrine machinery. Endocrine disruptions severely affect cardiovascular integrity and hormonal therapies may instigate adverse cardiac events. Therefore, this review focuses on the cardioprotective potential of melatonin concerning endocrine instability-mediated cardiovascular dysfunction. Melatonin has been reported to effectively counteract sympathetic overstimulation and also reduce the cardiotoxic attributes of catecholamines and their derivatives. Melatonin suppresses the pernicious cardiovascular manifestation of thyrotoxicosis and autoimmune thyroiditis, which is possibly attributed to its antioxidant property and regulation of iodothyronine-deiodinase activity. Interestingly, being a circadian synchronizer melatonin potentially preserves the diurnal pattern of insulin secretion and thereby improves glucose tolerance and cardiac GLUT-4 expression. Besides, melatonin modulates insulin signaling pathway by enhancing the activation of insulin receptor-associated tyrosine kinase, thus protecting the heart against diabetogenic outcomes. Further, melatonin has demonstrated its beneficial action against non-dipper hypertension by regulating the RAAS function. However, there is a plethora of unresolved research question that necessitates additional investigation into the potential therapeutic effect of melatonin in endocrine dysfunctions that emanates during various physiological and pathological states and may have potentially harmful cardiovascular implications.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"104 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140680349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2 褪黑激素与病毒感染:以治疗效果和 SARS-CoV-2 为重点的综述
Melatonin Research Pub Date : 2024-04-19 DOI: 10.32794/mr112500168
Leonor Chacin-Bonilla, Ernesto Bonilla
{"title":"Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2","authors":"Leonor Chacin-Bonilla, Ernesto Bonilla","doi":"10.32794/mr112500168","DOIUrl":"https://doi.org/10.32794/mr112500168","url":null,"abstract":"      Viral infections can cause serious diseases which lead to significant morbidity and mortality of patients. In most cases, effective therapeutic approaches are lacking. Melatonin (MEL), a multifunctional molecule produced in the pineal gland and many other organs, is known as a potent anti-inflammatory and antioxidant, a positive regulator of immune functions and a suppressor of apoptosis, with therapeutic effects in diverse diseases. These actions suggest the potential of MEL to treat viral infections. A variety of studies have shown that MEL supplementation is effective against a number of viral infections. Many of these reports have strongly suggested its use as an adjuvant or therapeutic agent. Notably, the efficacy of this molecule as a prophylactic or therapeutic weapon against COVID-19 has been demonstrated both in experimental conditions and in clinical trials, and it can reduce the severity and mortality of the patients. This review summarizes actions of MEL on viral infections and focuses on its therapeutic effects against COVID-19 and generally highlights MEL as an attractive therapy in other viral infections. ","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":" 98","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140683241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions 褪黑素、丁酸盐和绿茶对神经退行性疾病的普遍益处和相互作用的生理过程
Melatonin Research Pub Date : 2024-04-18 DOI: 10.32794/mr112500167
George Anderson
{"title":"Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions","authors":"George Anderson","doi":"10.32794/mr112500167","DOIUrl":"https://doi.org/10.32794/mr112500167","url":null,"abstract":"There is a growing dissatisfaction at the lack of progress in treating neurodegenerative conditions, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. No current pharmaceuticals have any significant impact on the pathophysiological changes occurring in such neurodegenerative conditions. More promising has been the utilization of nutraceuticals, a number of which show preventative and treatment benefits. This article reviews the beneficial effects of melatonin, sodium butyrate and epigallocatechin gallate (EGCG) in the management of the pathophysiological changes underpinning neurodegenerative conditions. It is proposed that all three nutraceuticals upregulate the tryptophan-melatonin pathway, which may be particularly important in astrocytes given astrocyte regulation of neuronal energy supply and antioxidants, including released melatonin. Alterations in the tryptophan-melatonin pathway are intimately intertwined with changes in the kynurenine pathway and its neuroregulatory products, including kynurenic acid and quinolinic acid. This article places these changes in the tryptophan-melatonin pathways within a novel circadian-systemic interaction, involving the regulation of the night-time rise in cortisol culminating in the morning cortisol awakening response that mediates effects via glucocorticoid receptor (GR) activation. The night-time and morning GR activation is suppressed by melatonin, gut microbiome derived butyrate and bcl2-associated athanogene (BAG)-1. As melatonin, butyrate and BAG-1 decrease over age, there is a heightened level of GR nuclear translocation with age at night and early morning. This is exemplified by the 10-fold decrease in pineal melatonin in people in their 9th, versus 2nd, decade of life. The ‘battle’ of melatonin/butyrate/EGCG versus cortisol/GR for influence on cellular function, microenvironment homeostasis and systemic system (immune) regulation at night and early morning shapes how the body and brain are prepared for the coming day and drives the emergence of aging associated neurodegenerative conditions. It is upon such processes that melatonin, butyrate and EGCG have their impacts.    ","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocarriers for melatonin delivery 用于递送褪黑素的纳米载体
Melatonin Research Pub Date : 2023-12-31 DOI: 10.32794/mr112500165
Amirreza Ahmadi Jazi, Fatemeh Mohammadzadeh, Saeed Amirkhanlou, Zahra Arab Bafarani, Seyed Mostafa Mir
{"title":"Nanocarriers for melatonin delivery","authors":"Amirreza Ahmadi Jazi, Fatemeh Mohammadzadeh, Saeed Amirkhanlou, Zahra Arab Bafarani, Seyed Mostafa Mir","doi":"10.32794/mr112500165","DOIUrl":"https://doi.org/10.32794/mr112500165","url":null,"abstract":"More attention has been drawn to the drug delivery systems to achieve more precise and efficient treatment for patients with less doses of medicines. The use of nanoparticles for drug delivery system has emerged for this purpose. It can enhance the treatment efficiency by use of the drugs more selectively and precisely to deliver them to the targeted organs or tissues. Drug delivery systems can also help to reduce the side effects, especially for the chemotherapeutic agents that have severe toxicity. Melatonin (N-acetyl-5-methoxytriptamine) is a small indolamine molecule that is produced by most cells and can influence on circadian manner. Melatonin also has antiapoptotic and antioxidant actions depending on the microenvironment; these actions are enhanced when it is incorporated into nanocarriers. Although the therapeutic effects of melatonin are promising, to achieve its optimal results is required. Therefore, the use of nanocarriers of melatonin is of clinical interest. Different melatonin loaded nanocarriers such as lipid-based nanocarriers, hybrid nanocarriers, synthetic ones, etc. can be used to deliver melatonin more efficiently for prevention or treatment of various diseases. In this review, we summarize the treatment efficiency of melatonin when it is incorporated into different nanocarriers.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"114 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139134616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin and cancer: Exploring gene networks and functional categories 褪黑激素与癌症探索基因网络和功能类别
Melatonin Research Pub Date : 2023-12-31 DOI: 10.32794/mr112500161
L. Chuffa, Robson Francisco Carvalho, Victória Larissa Schimidt Camargo, Sarah Santiloni Cury, R. Domeniconi, D. Zuccari, F. Seiva
{"title":"Melatonin and cancer: Exploring gene networks and functional categories","authors":"L. Chuffa, Robson Francisco Carvalho, Victória Larissa Schimidt Camargo, Sarah Santiloni Cury, R. Domeniconi, D. Zuccari, F. Seiva","doi":"10.32794/mr112500161","DOIUrl":"https://doi.org/10.32794/mr112500161","url":null,"abstract":"While melatonin is known for its multifaceted properties and its potential to combat cancer, there has been limited exploration of the cancer-melatonin interaction at the gene network level. One of the ways to better understand the molecular mechanisms of melatonin’s anti-cancer effects is to use text-mining strategies to extract relevant information that creates knowledge networks of entities and their associations. In this study, we mined gene-publication associations to search for genes most relevant to the terms of “melatonin” and “cancer”. A total of 152 genes were identified and ranked, among which 15 were kinase-related and three G-protein coupled receptor genes. The hub genes (STAT3, JUN, TP53, MAPK3, EP300, SRC, HSP90AA1, AKT1, ESR1, and IL6) were involved with several pathways in cancer. After examining the melatonin-treated cancers, we mapped 25 upregulated and 51 downregulated genes; these were strongly associated with cancer hallmarks such as resisting cell death, sustaining proliferative signaling, and inducing invasion and metastasis. Upregulated genes showed molecular functions including apoptotic protease activator, caspase activator, enzyme regulator, and protein binding, whereas the downregulated genes affected protein kinase activities, transcription factor binding, protein, enzyme, DNA, and promoter bindings. By connecting gene subsets, we detected a closer relationship among breast, hepatocellular, prostate, and oral cancers, in addition to neuroblastoma and osteosarcoma in terms of changes in melatonin-related signaling pathways. TCGA data were analyzed to understand the impact of gene signatures on survival of patients, and melatonin-downregulated genes were associated with longer survival of patients with glioblastoma, bladder, breast, colon, stomach, liver, lung, and ovarian carcinomas. These results provide a global view of gene interaction networks in melatonin-treated cancers and their functional value, opening new opportunities to consider melatonin for cancer therapy.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"122 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139133947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin and Covid-19: An opened Pandora's box and the hope for the time being 褪黑素和 Covid-19:打开的潘多拉魔盒和暂时的希望
Melatonin Research Pub Date : 2023-12-31 DOI: 10.32794/mr112500163
Leonor Chacin-Bonilla, Ernesto Bonilla
{"title":"Melatonin and Covid-19: An opened Pandora's box and the hope for the time being","authors":"Leonor Chacin-Bonilla, Ernesto Bonilla","doi":"10.32794/mr112500163","DOIUrl":"https://doi.org/10.32794/mr112500163","url":null,"abstract":"The SARS-CoV-2 pandemic is a global health concern still ongoing. No single therapeutic intervention with high efficacy exists and virus mutations continue to improve immune evasion decreasing vaccine efficacy. Therefore, a therapy which instead targets severe symptoms of COVID-19 should be contemplated. Hyperinflammation, cytokine storm and oxidation are relevant in the evolution of COVID-19. Considering the anti-inflammatory, anti-oxidative and cytoprotective effects of melatonin (MEL) on viral infections, its potential links with COVID-19 should be researched. In addition, evidence suggests a viricidal action of MEL and an increase in the efficacy of SARS-CoV-2 vaccines. One of the neglected and excellent options for therapy is MEL. We strongly support and encourage the use of MEL as a therapy for COVID-19.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":" 840","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139136660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olfactory neuronal precursors as a model to analyze the effects of melatonin in Alzheimer's disease. 以嗅觉神经元前体为模型分析褪黑激素对阿尔茨海默病的影响
Melatonin Research Pub Date : 2023-12-31 DOI: 10.32794/mr112500164
Valeria Santillan Morales, Gloria Acacia Benitez King
{"title":"Olfactory neuronal precursors as a model to analyze the effects of melatonin in Alzheimer's disease.","authors":"Valeria Santillan Morales, Gloria Acacia Benitez King","doi":"10.32794/mr112500164","DOIUrl":"https://doi.org/10.32794/mr112500164","url":null,"abstract":"Alzheimer's disease (AD) is a multifactorial disorder of great importance affecting millions globally and its prevalence will triple in the following decades. Therefore, analysis and identification of substances which can effectively reduce the pathological process of this disease in different study models are crucial. Melatonin works as a multitasking substance and some of its activities could be used to target the neurodegenerative process of AD. These include, but not limited to, its potent antioxidant activity, regulation of sleep-wake rhythms (important for the consolidation of memory and cognition) and its action as a neurotrophic growth factor that promotes differentiation and neuronal proliferation. To evaluate the effects of melatonin at cellular level in AD, it is essential to have a study model that reflects the pathological process occurring in the CNS. In this, review we summarize the potential use of olfactory neuronal precursors derived from olfactory neuroepithelium directly obtained from patients for such purposes.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"34 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139132431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The therapeutic potential of melatonin against hepatotoxicity caused by obesity and NSAIDs: A comprehensive review 褪黑素对肥胖和非甾体抗炎药引起的肝毒性的治疗潜力:综述
Melatonin Research Pub Date : 2023-12-31 DOI: 10.32794/mr112500162
Anupama Nath, Songita Ghosh, T. Dey, A. Chattopadhyay, Debasish Bandyopadhyay
{"title":"The therapeutic potential of melatonin against hepatotoxicity caused by obesity and NSAIDs: A comprehensive review","authors":"Anupama Nath, Songita Ghosh, T. Dey, A. Chattopadhyay, Debasish Bandyopadhyay","doi":"10.32794/mr112500162","DOIUrl":"https://doi.org/10.32794/mr112500162","url":null,"abstract":"The obesity and increased free fatty acid level are considered the etiology of hepatotoxicity leading to steatohepatitis and hepatic fibrosis. Obesity promotes inflammatory response and oxidative stress. Adipocytes secrete various proinflammatory cytokines including TNF-α, IL-1β, IL-6 and leptin to initiate a vicious cycle and cause further fat accumulation and weight gain. Specifically, to liver, the fat accumulation will cause non-alcoholic fatty liver disease (NAFLD), the most prevailing chronic liver ailment, if it is not properly treated, then it will cause severe outcomes including fatality. In addition, obesity also cause other inflammatory disorders including osteoarthritis of the knee, joint pain, etc.  Non-steroidal anti-inflammatory drugs (NSAIDs) are most often used medicines for treatment of inflammation but their serious side effects are concerning. These include gastric mucosal damage, liver injury with elevated aminotransferase (AST/ALT) levels, hepatitis, jaundice and more fatal liver diseases. Melatonin, an antioxidant and anti-inflammatory molecule can be used to treat diverse kind of inflammatory diseases. It remarkably reduces the mRNA levels of pro-inflammatory cytokines of TNF-α, IL-6, IL-1β, etc. Melatonin and its metabolites retain the properties as an effective free radical scavenger and regulate various antioxidative and pro-oxidative enzymes. This molecule can potentially abate the ill effects of hepatotoxicity induced by both NSAIDs and obesity. Therefore, this review briefly summarizes the recent available knowledge on the protective effects of melatonin against various disorders involving weight gain and hepatotoxicity.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"106 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139134705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cardioprotective potential of melatonin on cardiac hypertrophy: A mechanistic overview 褪黑素对心脏肥厚的保护作用:机制综述
Melatonin Research Pub Date : 2023-09-30 DOI: 10.32794/mr112500157
Razia Khatoon, Swaimanti Sarkar, Aindrila Chattopadhyay, Debasish Bandyopadhyay
{"title":"The cardioprotective potential of melatonin on cardiac hypertrophy: A mechanistic overview","authors":"Razia Khatoon, Swaimanti Sarkar, Aindrila Chattopadhyay, Debasish Bandyopadhyay","doi":"10.32794/mr112500157","DOIUrl":"https://doi.org/10.32794/mr112500157","url":null,"abstract":"Cardiac hypertrophy (CH) is an increment of muscle mass to maintain the heart regular operations. A physiological cardiac hypertrophy due to exercise or other normal physiological process is characterized by normal contractile function and structural framework of heart tissue. In contrast, pathological hypertrophy occurs in response to increased pressure or volume overload from several cardiovascular diseases including hypertension, valvular diseases, cardiac infarction and heart failure. It is of major concern as it is one of the leading causes of death worldwide. Despite much progress in this field there is a scope for understanding of the molecular mechanisms of this condition. In this review, various types of cardiac hypertrophy and their intricate physio-pathological mechanisms have been discussed. In addition, the genetic mutations in sarcomere genes and oxidative stress are also closely linked to hypertrophic cardiomyopathy. Although several drugs against cardiac hypertrophy have been used, it appears that melatonin, due to its high bioavailability and low side effects, is a better candidate than the conventional medicine for treatment of hypertrophic cardiomyopathy. Melatonin, a hormone and a potent antioxidant, is secreted mainly from the pineal gland, but it is also synthesized from different peripheral tissues including the heart. This molecule can regulate a myriad of cellular functions. It can protect against cardiac hypertrophy via reducing oxidative stress, elevating Cu-Mn SOD via controlling several cell signalling pathways of Akt/mTOR, ROR-α and NLRP3 cascades. Melatonin also mitigates cardiac hypertrophy by suppressing pro-inflammatory cytokines including TNF-α and TGF-β and cardiac hypertrophy markers like β-MHC, ANP, BNP, LDH. This review focuses on the molecular mechanisms of cardiac hypertrophy and the defensive role of melatonin on it. We propose melatoninas a propitious adjunct for the treatment of cardiac hypertrophy.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136278708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CREB1 spatio-temporal dynamics within the rat pineal gland 大鼠松果体内CREB1的时空动态
Melatonin Research Pub Date : 2023-09-30 DOI: 10.32794/mr112500153
Luz E . Farias Altamirano, Elena Vásquez, Carlos L. Freites, Jorge E. Ibañez, Mario E . Guido, Estela M . Muñoz
{"title":"CREB1 spatio-temporal dynamics within the rat pineal gland","authors":"Luz E . Farias Altamirano, Elena Vásquez, Carlos L. Freites, Jorge E. Ibañez, Mario E . Guido, Estela M . Muñoz","doi":"10.32794/mr112500153","DOIUrl":"https://doi.org/10.32794/mr112500153","url":null,"abstract":"In the rat pineal gland (PG), cyclic AMP responsive element-binding protein 1 (CREB1) participates in the nocturnal melatonin synthesis that rhythmically modulates physiology and behavior. Phosphorylation of CREB1 is one of the key regulatory steps that drives pineal transcription. The spatio-temporal dynamics of CREB1 itself in the different PG cell types have not yet been documented. In this study we analyzed total CREB1 in the rat PG via Western blot and fluorescence immunohistochemistry followed by confocal laser-scanning microscopy and quantitative analysis. Total CREB1 levels remained constant in the PG throughout the light:dark cycle. The distribution pattern of nuclear CREB1 did vary among PG cell types. Pinealocytes emerged to have discrete CREB1 domains within their nucleoplasm that were especially distinct. The number, size, and location of CREB1 foci fluctuated among pinealocytes, within the same PG and among Zeitgeber times (ZTs). A significantly larger dispersion of CREB1-immunoreactive nuclear sites was found at night than during the day. However, the overall transcription activity was mostly conserved between the light and dark phases, as shown by the expression of a particular phosphorylated form of the RNA polymerase II (RNAPII-pSer5CTD). Suppression of the nocturnal norepinephrine pulse by chronic bilateral superior cervical ganglionectomy increased CREB1 dispersion in pinealocyte nuclei at early night, as compared to sham-derived cells. In addition, differences in CREB1 distribution were found between sham-operated and non-operated rats at ZT14. Together, these data suggest that in mature pinealocytes, nuclear CREB1 is subjected to a dynamic spatio-temporal distribution. Further studies are necessary to elucidate the underlying mechanisms and to understand the impact of CREB1 reorganization in the pineal transcriptome.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136278707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信