William C Cho, Kwan P Li, Chi F Wong, King Y Fung, James C H Chow, Ka M Cheung, Jeffrey C H Chan, Eunice Y T Lau
{"title":"AKR1C3 as a therapeutic target to overcome erlotinib resistance in lung adenocarcinoma.","authors":"William C Cho, Kwan P Li, Chi F Wong, King Y Fung, James C H Chow, Ka M Cheung, Jeffrey C H Chan, Eunice Y T Lau","doi":"10.1186/s40779-025-00593-4","DOIUrl":"10.1186/s40779-025-00593-4","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"8"},"PeriodicalIF":16.7,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence.","authors":"Muhammad Tufail, Can-Hua Jiang, Ning Li","doi":"10.1186/s40779-025-00595-2","DOIUrl":"10.1186/s40779-025-00595-2","url":null,"abstract":"<p><p>Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"7"},"PeriodicalIF":16.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring new horizons in CAR-based therapy for the treatment of thyroid-associated ophthalmopathy.","authors":"Xin-Yu Zhu, Wei-Yi Zhou, Tuo Li","doi":"10.1186/s40779-025-00590-7","DOIUrl":"10.1186/s40779-025-00590-7","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"3"},"PeriodicalIF":16.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retrospective analysis of US veterans with inclusion body myositis: initial findings from the Veterans Affairs Corporate Data Warehouse.","authors":"Vladimir M Liarski","doi":"10.1186/s40779-025-00592-5","DOIUrl":"10.1186/s40779-025-00592-5","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"6"},"PeriodicalIF":16.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Yang, Yuan-Yi Wang, Fei Ma, Bing-He Xu, Hai-Li Qian
{"title":"Build the virtual cell with artificial intelligence: a perspective for cancer research.","authors":"Tao Yang, Yuan-Yi Wang, Fei Ma, Bing-He Xu, Hai-Li Qian","doi":"10.1186/s40779-025-00591-6","DOIUrl":"10.1186/s40779-025-00591-6","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"4"},"PeriodicalIF":16.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies.","authors":"Bu-Fu Tang, Wang-Ting Xu, Shi-Ji Fang, Jin-Yu Zhu, Rong-Fang Qiu, Lin Shen, Yang Yang, Qiao-You Weng, Ya-Jie Wang, Jia-Yi Ding, Xiao-Jie Zhang, Wei-Qian Chen, Li-Yun Zheng, Jing-Jing Song, Biao Chen, Zhong-Wei Zhao, Min-Jiang Chen, Jian-Song Ji","doi":"10.1186/s40779-024-00588-7","DOIUrl":"10.1186/s40779-024-00588-7","url":null,"abstract":"<p><strong>Background: </strong>Radiofrequency ablation (RFA) is an efficient treatment with unlimited potential for liver cancer that can effectively reduce patient mortality. Understanding the biological process related with RFA treatment is important for improving treatment strategy. This study aimed to identify the critical targets for regulating the efficacy of RFA.</p><p><strong>Methods: </strong>The RFA treatment in hepatocellular carcinoma (HCC) tumor models in vivo, was analyzed by RNA sequencing technology. The heat treatment in vitro for HCC tumor cells was also constructed to explore the mechanism after RFA treatment in tumor cells. Nanoparticles with high affinity to tumor cells were applied as a new therapy to interfere with the expression of maternal embryonic leucine zipper kinase (MELK).</p><p><strong>Results: </strong>It was found that RFA treatment upregulated MELK expression, and MELK inhibition promoted RFA efficacy by immunogenic cell death and the antitumor response, including anti-tumoral macrophage polarization and increased CD8<sup>+</sup> T cell cytotoxicity in HCC. Mechanically, MELK binds to fatty acid-binding protein 5 (FABP5), and affects its ubiquitination through the K48R pathway to increase its stability, thereby activating protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling axis to weaken the RFA-mediated antitumor effect. In addition, the synthesis of arginylglycylaspartic acid (RGD)-lipid nanoparticles (LNPs) targeting tumor cell-intrinsic MELK enhanced RFA efficacy in HCC.</p><p><strong>Conclusion: </strong>MELK is a therapeutic target by regulating RFA efficacy in HCC, and targeting MELK via RGD-LNPs provides new insight into improving RFA efficacy in HCC clinical treatment and combating the malignant progression of liver cancer.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"5"},"PeriodicalIF":16.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing space medicine: a global perspective on in-orbit research and future directions.","authors":"Shan-Guang Chen, Xiao-Ping Chen, Bin Wu","doi":"10.1186/s40779-024-00587-8","DOIUrl":"10.1186/s40779-024-00587-8","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"1"},"PeriodicalIF":16.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Wei Zhang, Yang Xiang, Li Chen, Shao-Ting Liu, Chuan-Chuan Lin, Jiu-Xuan Li, Li-Xin Xiang, Nan-Xi Chen, Dong-Ling Shi, Yang-Yang Zhang, Xue-Ying Wang, Lan-Yue Hu, Sai Chen, Ya Luo, Cheng-Ning Tan, Pei-Pei Xue, Yang-Zhou Jiang, Sheng-Wen Calvin Li, Zhen-Xing Yang, Ji-Gang Dai, Zhong-Jun Li, Qian Ran
{"title":"Dietary methionine supplementation promotes mice hematopoiesis after irradiation.","authors":"Wei-Wei Zhang, Yang Xiang, Li Chen, Shao-Ting Liu, Chuan-Chuan Lin, Jiu-Xuan Li, Li-Xin Xiang, Nan-Xi Chen, Dong-Ling Shi, Yang-Yang Zhang, Xue-Ying Wang, Lan-Yue Hu, Sai Chen, Ya Luo, Cheng-Ning Tan, Pei-Pei Xue, Yang-Zhou Jiang, Sheng-Wen Calvin Li, Zhen-Xing Yang, Ji-Gang Dai, Zhong-Jun Li, Qian Ran","doi":"10.1186/s40779-024-00584-x","DOIUrl":"10.1186/s40779-024-00584-x","url":null,"abstract":"<p><strong>Background: </strong>With the increasing risk of nuclear exposure, more attention has been paid to the prevention and treatment of acute radiation syndrome (ARS). Although amino acids are key nutrients involved in hematopoietic regulation, the impacts of amino acids on bone marrow hematopoiesis following irradiation and the associated mechanisms have not been fully elucidated. Hence, it is of paramount importance to study the changes in amino acid metabolism after irradiation and their effects on hematopoiesis as well as the related mechanisms.</p><p><strong>Methods: </strong>The content of serum amino acids was analyzed using metabolomic sequencing. The survival rate and body weight of the irradiated mice were detected after altering the methionine content in the diet. Extracellular matrix (ECM) protein analysis was performed via proteomics analysis. Inflammatory factors were examined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry, Western blotting, and immunofluorescence were employed to determine the mechanism by which S100 calcium-binding protein A4 (S100A4) regulates macrophage polarization.</p><p><strong>Results: </strong>The survival time of irradiated mice was significantly associated with alterations in multiple amino acids, particularly methionine. A high methionine diet promoted irradiation tolerance, especially in the recovery of bone marrow hematopoiesis, yet with dose limitations. Folate metabolism could partially alleviate the dose bottleneck by reducing the accumulation of homocysteine. Mechanistically, high methionine levels maintained the abundance of ECM components, including collagens and glycoproteins, in the bone marrow post-irradiation, among which the level of S100A4 was significantly changed. S100A4 regulated macrophage polarization via the STAT3 pathway, inhibited bone marrow inflammation and facilitated the proliferation and differentiation of hematopoietic stem/progenitor cells.</p><p><strong>Conclusions: </strong>We have demonstrated that an appropriate elevation in dietary methionine enhances irradiation tolerance in mice and explains the mechanism by which methionine regulates bone marrow hematopoiesis after irradiation.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"83"},"PeriodicalIF":16.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy.","authors":"Yogesh Godiyal, Drishti Maheshwari, Hiroaki Taniguchi, Shweta S Zinzuwadia, Yanelys Morera-Díaz, Devesh Tewari, Anupam Bishayee","doi":"10.1186/s40779-024-00586-9","DOIUrl":"10.1186/s40779-024-00586-9","url":null,"abstract":"<p><p>Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"82"},"PeriodicalIF":16.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}