{"title":"A unifying framework for n-dimensional quasi-conformal mappings","authors":"Daoping Zhang, G. Choi, Jianping Zhang, L. Lui","doi":"10.1137/21M1457497","DOIUrl":"https://doi.org/10.1137/21M1457497","url":null,"abstract":"With the advancement of computer technology, there is a surge of interest in effective mapping methods for objects in higher-dimensional spaces. To establish a one-to-one correspondence between objects, higher-dimensional quasi-conformal theory can be utilized for ensuring the bijectivity of the mappings. In addition, it is often desirable for the mappings to satisfy certain prescribed geometric constraints and possess low distortion in conformality or volume. In this work, we develop a unifying framework for computing $n$-dimensional quasi-conformal mappings. More specifically, we propose a variational model that integrates quasi-conformal distortion, volumetric distortion, landmark correspondence, intensity mismatch and volume prior information to handle a large variety of deformation problems. We further prove the existence of a minimizer for the proposed model and devise efficient numerical methods to solve the optimization problem. We demonstrate the effectiveness of the proposed framework using various experiments in two- and three-dimensions, with applications to medical image registration, adaptive remeshing and shape modeling.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134091054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive and Implicit Regularization for Matrix Completion","authors":"Zhemin Li, Tao Sun, Hongxia Wang, Bao Wang","doi":"10.1137/22M1489228","DOIUrl":"https://doi.org/10.1137/22M1489228","url":null,"abstract":"The explicit low-rank regularization, e.g., nuclear norm regularization, has been widely used in imaging sciences. However, it has been found that implicit regularization outperforms explicit ones in various image processing tasks. Another issue is that the fixed explicit regularization limits the applicability to broad images since different images favor different features captured by different explicit regularizations. As such, this paper proposes a new adaptive and implicit low-rank regularization that captures the low-rank prior dynamically from the training data. The core of our new adaptive and implicit low-rank regularization is parameterizing the Laplacian matrix in the Dirichlet energy-based regularization, which we call the regularization AIR. Theoretically, we show that the adaptive regularization of ReTwo{AIR} enhances the implicit regularization and vanishes at the end of training. We validate AIR's effectiveness on various benchmark tasks, indicating that the AIR is particularly favorable for the scenarios when the missing entries are non-uniform. The code can be found at https://github.com/lizhemin15/AIR-Net.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114408193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bilevel Imaging Learning Problems as Mathematical Programs with Complementarity Constraints: Reformulation and Theory","authors":"J. C. Reyes","doi":"10.1137/21m1450744","DOIUrl":"https://doi.org/10.1137/21m1450744","url":null,"abstract":"We investigate a family of bilevel imaging learning problems where the lower-level instance corresponds to a convex variational model involving first- and second-order nonsmooth sparsity-based regularizers. By using geometric properties of the primal-dual reformulation of the lower-level problem and introducing suitable auxiliar variables, we are able to reformulate the original bilevel problems as Mathematical Programs with Complementarity Constraints (MPCC). For the latter, we prove tight constraint qualification conditions (MPCC-RCPLD and partial MPCC-LICQ) and derive Mordukhovich (M-) and Strong (S-) stationarity conditions. The stationarity systems for the MPCC turn also into stationarity conditions for the original formulation. Second-order sufficient optimality conditions are derived as well, together with a local uniqueness result for stationary points. The proposed reformulation may be extended to problems in function spaces, leading to MPCC's with constraints on the gradient of the state. The MPCC reformulation also leads to the efficient use of available large-scale nonlinear programming solvers, as shown in a companion paper, where different imaging applications are studied.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124236650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear convergence of randomized Kaczmarz method for solving complex-valued phaseless equations","authors":"Meng-zhi Huang, Yang Wang","doi":"10.1137/21m1450537","DOIUrl":"https://doi.org/10.1137/21m1450537","url":null,"abstract":"A randomized Kaczmarz method was recently proposed for phase retrieval, which has been shown numerically to exhibit empirical performance over other state-of-the-art phase retrieval algorithms both in terms of the sampling complexity and in terms of computation time. While the rate of convergence has been studied well in the real case where the signals and measurement vectors are all real-valued, there is no guarantee for the convergence in the complex case. In fact, the linear convergence of the randomized Kaczmarz method for phase retrieval in the complex setting is left as a conjecture by Tan and Vershynin. In this paper, we provide the first theoretical guarantees for it. We show that for random measurements $mathbf{a}_j in mathbb{C}^n, j=1,ldots,m $ which are drawn independently and uniformly from the complex unit sphere, or equivalent are independent complex Gaussian random vectors, when $m ge Cn$ for some universal positive constant $C$, the randomized Kaczmarz scheme with a good initialization converges linearly to the target solution (up to a global phase) in expectation with high probability. This gives a positive answer to that conjecture.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127014517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence Results in Image Interpolation With the Continuous SSIM","authors":"F. Marchetti, G. Santin","doi":"10.1137/22M147637X","DOIUrl":"https://doi.org/10.1137/22M147637X","url":null,"abstract":"Assessing the similarity of two images is a complex task that attracts significant efforts in the image processing community. The widely used Structural Similarity Index Measure (SSIM) addresses this problem by quantifying a perceptual structural similarity. In this paper we consider a recently introduced continuous SSIM (cSSIM), which allows one to analyze sequences of images of increasingly fine resolutions, and further extend the definition of the index to encompass the locally weighted version that is used in practice. For both the local and the global versions, we prove that the continuous index includes the classical SSIM as a special case, and we provide a precise connection between image similarity measured by the cSSIM and by the $L_2$ norm. Using this connection, we derive bounds on the cSSIM by means of bounds on the $L_2$ error, and we even prove that the two error measures are equivalent in certain circumstances. We exploit these results to obtain precise rates of convergence with respect to the cSSIM for several concrete image interpolation methods, and we further validate these findings by different numerical experiments. This newly established connection paves the way to obtain novel insights into the features and limitations of the SSIM, including on the effect of the local weighted window on the index performances.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124289636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Stochastic Inertial-Accelerated Methods with Delayed Derivatives for Nonconvex Problems","authors":"Yangyang Xu, Yibo Xu, Yonggui Yan, Jiewei Chen","doi":"10.1137/21m1435719","DOIUrl":"https://doi.org/10.1137/21m1435719","url":null,"abstract":"Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (accelerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where computing workers do not coordinate with each other. In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization problems. The proposed method can have guaranteed convergence even with delayed derivative information in a distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is $O(1/K^{frac{1}{2}})$ in the expected value of the gradient norm square, for $K$ iterations. In a distributed environment, the convergence rate of the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay with the number of iterations for the latter two problem classes. We test the proposed method on three applications. The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former uses delayed derivatives. Our source code is released at https://github.com/RPI-OPT/Inertial-SsGM","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133409893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization","authors":"J. C. Reyes, David Villacis","doi":"10.1137/21m143412x","DOIUrl":"https://doi.org/10.1137/21m143412x","url":null,"abstract":"We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130473744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hartmut Bauermeister, Emanuel Laude, T. Möllenhoff, M. Moeller, D. Cremers
{"title":"Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable Approach for Continuous Markov Random Fields","authors":"Hartmut Bauermeister, Emanuel Laude, T. Möllenhoff, M. Moeller, D. Cremers","doi":"10.1137/21m1433241","DOIUrl":"https://doi.org/10.1137/21m1433241","url":null,"abstract":"Dual decomposition approaches in nonconvex optimization may suffer from a duality gap. This poses a challenge when applying them directly to nonconvex problems such as MAP-inference in a Markov random field (MRF) with continuous state spaces. To eliminate such gaps, this paper considers a reformulation of the original nonconvex task in the space of measures. This infinite-dimensional reformulation is then approximated by a semi-infinite one, which is obtained via a piecewise polynomial discretization in the dual. We provide a geometric intuition behind the primal problem induced by the dual discretization and draw connections to optimization over moment spaces. In contrast to existing discretizations which suffer from a grid bias, we show that a piecewise polynomial discretization better preserves the continuous nature of our problem. Invoking results from optimal transport theory and convex algebraic geometry we reduce the semi-infinite program to a finite one and provide a practical implementation based on semidefinite programming. We show, experimentally and in theory, that the approach successfully reduces the duality gap. To showcase the scalability of our approach, we apply it to the stereo matching problem between two images.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"313 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128742199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Splitting Scheme for Flip-Free Distortion Energies","authors":"Oded Stein, Jiajin Li, J. Solomon","doi":"10.1137/21M1433058","DOIUrl":"https://doi.org/10.1137/21M1433058","url":null,"abstract":"We introduce a robust optimization method for flip-free distortion energies used, for example, in parametrization, deformation, and volume correspondence. This method can minimize a variety of distortion energies, such as the symmetric Dirichlet energy and our new symmetric gradient energy. We identify and exploit the special structure of distortion energies to employ an operator splitting technique, leading us to propose a novel Alternating Direction Method of Multipliers (ADMM) algorithm to deal with the non-convex, non-smooth nature of distortion energies. The scheme results in an efficient method where the global step involves a single matrix multiplication and the local steps are closed-form per-triangle/per-tetrahedron expressions that are highly parallelizable. The resulting general-purpose optimization algorithm exhibits robustness to flipped triangles and tetrahedra in initial data as well as during the optimization. We establish the convergence of our proposed algorithm under certain conditions and demonstrate applications to parametrization, deformation, and volume correspondence.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129536246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chu-Hsiang Huang, Mingjie Shao, Wing-Kin Ma, A. M. So
{"title":"SISAL Revisited","authors":"Chu-Hsiang Huang, Mingjie Shao, Wing-Kin Ma, A. M. So","doi":"10.1137/21m1430613","DOIUrl":"https://doi.org/10.1137/21m1430613","url":null,"abstract":"Simplex identification via split augmented Lagrangian (SISAL) is a popularly-used algorithm in 4 blind unmixing of hyperspectral images. Developed by José M. Bioucas-Dias in 2009, the algorithm 5 is fundamentally relevant to tackling simplex-structured matrix factorization, and by extension, non6 negative matrix factorization, which have many applications under their umbrellas. In this article, we 7 revisit SISAL and provide new meanings to this quintessential algorithm. The formulation of SISAL 8 was motivated from a geometric perspective, with no noise. We show that SISAL can be explained 9 as an approximation scheme from a probabilistic simplex component analysis framework, which is 10 statistical and is principally more powerful in accommodating the presence of noise. The algorithm 11 for SISAL was designed based on a successive convex approximation method, with a focus on practical 12 utility. It was not known, by analyses, whether the SISAL algorithm has any kind of guarantee 13 of convergence to a stationary point. By establishing associations between the SISAL algorithm 14 and a line-search-based proximal gradient method, we confirm that SISAL can indeed guarantee 15 convergence to a stationary point. Our re-explanation of SISAL also reveals new formulations and 16 algorithms. The performance of these new possibilities is demonstrated by numerical experiments. 17","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115397627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}