Microbiological reviews最新文献

筛选
英文 中文
Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. 青蒿素和抗疟内过氧化物:从草药到靶向化疗。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.301-315.1996
S. Meshnick, T. Taylor, S. Kamchonwongpaisan
{"title":"Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy.","authors":"S. Meshnick, T. Taylor, S. Kamchonwongpaisan","doi":"10.1128/MMBR.60.2.301-315.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.301-315.1996","url":null,"abstract":"Artemisinin and its derivatives are endoperoxide-containing compounds which represent a promising new class of antimalarial drugs. In the presence of intraparasitic iron, these drugs are converted into free radicals and other electrophilic intermediates which then alkylate specific malaria target proteins. Combinations of available derivatives and other antimalarial agents show promise both as first-line agents and in the treatment of severe disease.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"18 1","pages":"301-15"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86506002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 566
Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response. 卡他氏布氏菌:流行病学、表面抗原结构和免疫反应。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.267-279.1996
T F Murphy
{"title":"Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response.","authors":"T F Murphy","doi":"10.1128/mr.60.2.267-279.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.267-279.1996","url":null,"abstract":"<p><p>Over the past decade, Branhamella catarrhalis has emerged as an important human pathogen. The bacterium is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease. B. catarrhalis is exclusively a human pathogen. It colonizes the respiratory tract of a small proportion of adults and a larger proportion of children. Studies involving restriction enzyme analysis of genomic DNA show that colonization is a dynamic process, with the human host eliminating and acquiring new strains frequently. The surface of B. catarrhalis contains outer membrane proteins, lipooligosaccharide, and pili. The genes which encode several outer membrane proteins have been cloned, and some of these proteins are being studied as potential vaccine antigens. Analysis of the immune response has been limited by the lack of an adequate animal model of B. catarrhalis infection. New information regarding outer membrane structure should guide studies of the human immune response to B. catarrhalis. Immunoassays which specifically detect antibodies to determinants exposed on the bacterial surface will elucidate the most relevant immune response. The recognition of B. catarrhalis as an important human pathogen has stimulated research on the epidemiology and surface structures of the bacterium. Future studies to understand the mechanisms of infection and to elucidate the human immune response to infection hold promise of developing new methods to treat and prevent infections caused by B. catarrhalis.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"267-79"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239443/pdf/600267.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19772640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 189
Molecular and industrial aspects of glucose isomerase. 葡萄糖异构酶的分子和工业方面。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.280-300.1996
Snehalata H. Bhosale, M. Rao, V. Deshpande
{"title":"Molecular and industrial aspects of glucose isomerase.","authors":"Snehalata H. Bhosale, M. Rao, V. Deshpande","doi":"10.1128/MMBR.60.2.280-300.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.280-300.1996","url":null,"abstract":"Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"8 1","pages":"280-300"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86839226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 382
Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. 细菌调节素:一类通过诱导细胞因子合成引起宿主组织病理的新型毒力因子。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.316-341.1996
Brian Henderson, S. Poole, Michael T. Wilson
{"title":"Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis.","authors":"Brian Henderson, S. Poole, Michael T. Wilson","doi":"10.1128/MMBR.60.2.316-341.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.316-341.1996","url":null,"abstract":"Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term \"modulin\" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"21 1","pages":"316-41"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81947560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 409
Field evaluations of marine oil spill bioremediation. 海洋溢油生物修复的现场评价。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.342-365.1996
R. Swannell, Kenneth Lee, M. Mcdonagh
{"title":"Field evaluations of marine oil spill bioremediation.","authors":"R. Swannell, Kenneth Lee, M. Mcdonagh","doi":"10.1128/MMBR.60.2.342-365.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.342-365.1996","url":null,"abstract":"Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"16 1","pages":"342-65"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78448050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 410
Ribosome regulation by the nascent peptide. 新生肽对核糖体的调节。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.366-385.1996
P S Lovett, E J Rogers
{"title":"Ribosome regulation by the nascent peptide.","authors":"P S Lovett,&nbsp;E J Rogers","doi":"10.1128/mr.60.2.366-385.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.366-385.1996","url":null,"abstract":"<p><p>Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the known examples the active amino acid sequences function after their emergence from the ribosome, cis control of translation by the nascent peptide is gene specific; nearly all such regulatory peptides exert no obvious trans effects in cells. The in vitro biochemical activities of the cat/cmla leader peptides on ribosomes and rRNA suggest a mechanism through which the nascent peptide can modify ribosome behavior. Other cis-acting regulatory peptides may involve more complex ribosomal interactions.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"366-85"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239448/pdf/600366.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19771846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Polyphasic taxonomy, a consensus approach to bacterial systematics. 多相分类学,细菌分类学的共识方法。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.407-438.1996
P Vandamme, B Pot, M Gillis, P de Vos, K Kersters, J Swings
{"title":"Polyphasic taxonomy, a consensus approach to bacterial systematics.","authors":"P Vandamme,&nbsp;B Pot,&nbsp;M Gillis,&nbsp;P de Vos,&nbsp;K Kersters,&nbsp;J Swings","doi":"10.1128/mr.60.2.407-438.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.407-438.1996","url":null,"abstract":"<p><p>Over the last 25 years, a much broader range of taxonomic studies of bacteria has gradually replaced the former reliance upon morphological, physiological, and biochemical characterization. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them in a consensus type of classification, framed in a general phylogeny derived from 16S rRNA sequence analysis. In some cases, the consensus classification is a compromise containing a minimum of contradictions. It is thought that the more parameters that will become available in the future, the more polyphasic classification will gain stability. In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae. An evaluation of our present insights, the conclusions derived from it, and the perspectives of polyphasic taxonomy are discussed, emphasizing the keystone role of the species. Taxonomists did not succeed in standardizing species delimitation by using percent DNA hybridization values. Together with the absence of another \"gold standard\" for species definition, this has an enormous repercussion on bacterial taxonomy. This problem is faced in polyphasic taxonomy, which does not depend on a theory, a hypothesis, or a set of rules, presenting a pragmatic approach to a consensus type of taxonomy, integrating all available data maximally. In the future, polyphasic taxonomy will have to cope with (i) enormous amounts of data, (ii) large numbers of strains, and (iii) data fusion (data aggregation), which will demand efficient and centralized data storage. In the future, taxonomic studies will require collaborative efforts by specialized laboratories even more than now is the case. Whether these future developments will guarantee a more stable consensus classification remains an open question.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"407-38"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239450/pdf/600407.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19771849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 395
Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions. 人类免疫缺陷病毒1型包膜糖蛋白:对免疫功能的深远影响。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.386-406.1996
N Chirmule, S Pahwa
{"title":"Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions.","authors":"N Chirmule,&nbsp;S Pahwa","doi":"10.1128/mr.60.2.386-406.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.386-406.1996","url":null,"abstract":"Infection by human immunodeficiency virus type 1 (HIV-1) leads to progressive destruction of the CD4+ T-cell subset, resulting in immune deficiency and AIDS. The specific binding of the viral external envelope glycoprotein of HIV-1, gp120, to the CD4 molecules initiates viral entry. In the past few years, several studies have indicated that the interaction of HIV-1 envelope glycoprotein with cells and molecules of the immune system leads to pleiotropic biological effects on immune functions, which include effects on differentiation of CD34+ lymphoid progenitor cells and thymocytes, aberrant activation and cytokine secretion patterns of mature T cells, induction of apoptosis, B-cell hyperactivity, inhibition of T-cell dependent B-cell differentiation, modulation of macrophage functions, interactions with components of complement, and effects on neuronal cells. The amino acid sequence homologies of the envelope glycoproteins with several cellular proteins have suggested that molecular mimicry may play a role in the pathogenesis of the disease. This review summarizes work done by several investigators demonstrating the profound biological effects of envelope glycoproteins of HIV-1 on immune system cells. Extensive studies have also been done on interactions of the viral envelope proteins with components of the immune system which may be important for eliciting a \"protective immune response.\" Understanding the influences of HIV-1 envelope glycoproteins on the immune system may provide valuable insights into HIV-1 disease pathogenesis and carries implications for the trials of HIV-1 envelope protein vaccines and immunotherapeutics.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"386-406"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239449/pdf/600386.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19771852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions. 人类免疫缺陷病毒1型包膜糖蛋白:对免疫功能的深远影响。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.386-406.1996
N. Chirmule, S. Pahwa
{"title":"Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions.","authors":"N. Chirmule, S. Pahwa","doi":"10.1128/MMBR.60.2.386-406.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.386-406.1996","url":null,"abstract":"Infection by human immunodeficiency virus type 1 (HIV-1) leads to progressive destruction of the CD4+ T-cell subset, resulting in immune deficiency and AIDS. The specific binding of the viral external envelope glycoprotein of HIV-1, gp120, to the CD4 molecules initiates viral entry. In the past few years, several studies have indicated that the interaction of HIV-1 envelope glycoprotein with cells and molecules of the immune system leads to pleiotropic biological effects on immune functions, which include effects on differentiation of CD34+ lymphoid progenitor cells and thymocytes, aberrant activation and cytokine secretion patterns of mature T cells, induction of apoptosis, B-cell hyperactivity, inhibition of T-cell dependent B-cell differentiation, modulation of macrophage functions, interactions with components of complement, and effects on neuronal cells. The amino acid sequence homologies of the envelope glycoproteins with several cellular proteins have suggested that molecular mimicry may play a role in the pathogenesis of the disease. This review summarizes work done by several investigators demonstrating the profound biological effects of envelope glycoproteins of HIV-1 on immune system cells. Extensive studies have also been done on interactions of the viral envelope proteins with components of the immune system which may be important for eliciting a \"protective immune response.\" Understanding the influences of HIV-1 envelope glycoproteins on the immune system may provide valuable insights into HIV-1 disease pathogenesis and carries implications for the trials of HIV-1 envelope protein vaccines and immunotherapeutics.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"11 1","pages":"386-406"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81493046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 105
Molecular and industrial aspects of glucose isomerase. 葡萄糖异构酶的分子和工业方面。
Microbiological reviews Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.280-300.1996
S H Bhosale, M B Rao, V V Deshpande
{"title":"Molecular and industrial aspects of glucose isomerase.","authors":"S H Bhosale,&nbsp;M B Rao,&nbsp;V V Deshpande","doi":"10.1128/mr.60.2.280-300.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.280-300.1996","url":null,"abstract":"<p><p>Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"280-300"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239444/pdf/600280.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19772641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 71
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信