Metabarcoding and Metagenomics最新文献

筛选
英文 中文
Evaluation of non-destructive DNA extraction protocols for insect metabarcoding: gentler and shorter is better Evaluation昆虫元条形码的无损DNA提取方案:更温和,更短
Metabarcoding and Metagenomics Pub Date : 2022-06-16 DOI: 10.3897/mbmg.6.78871
D. Marquina, T. Roslin, Piotr Łukasik, F. Ronquist
{"title":"Evaluation of non-destructive DNA extraction protocols for insect metabarcoding: gentler and shorter is better","authors":"D. Marquina, T. Roslin, Piotr Łukasik, F. Ronquist","doi":"10.3897/mbmg.6.78871","DOIUrl":"https://doi.org/10.3897/mbmg.6.78871","url":null,"abstract":"DNA metabarcoding can accelerate research on insect diversity, as it is cheap and fast compared to manual sorting and identification. Most metabarcoding protocols require homogenisation of the sample, preventing further work on the specimens. Mild digestion of the tissue by incubation in a lysis buffer has been proposed as an alternative, and, although some mild lysis protocols have already been presented, they have so far not been evaluated against each other. Here, we analyse how two mild lysis buffers (one more aggressive, one gentler in terms of tissue degradation), two different incubation times, and two DNA purification methods (a manual precipitation and an automated protocol) affect the accuracy of retrieving the true composition of mock communities using two mitochondrial markers (COI and 16S). We found that protocol-specific variation in concentration and purity of the DNA extracts produced had little effect on the recovery of species. However, the two lysis treatments differed in quantification of species abundances. Digestion in the gentler buffer and for a shorter time yielded better representation of original sample composition. Digestion in a more aggressive buffer or longer incubation time yielded lower alpha diversity values and increased differences between metabarcoding results and the true species-abundance distribution. We conclude that the details of non-destructive protocols can have a significant effect on metabarcoding performance. A short and mild lysis treatment appears the best choice for recovering the true composition of the sample. This not only improves accuracy, but also comes with a faster processing time than the other treatments.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45515910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe 环境DNA(eDNA)代谢编码调查显示,有证据表明非本土淡水物种入侵东欧新地区
Metabarcoding and Metagenomics Pub Date : 2022-06-10 DOI: 10.3897/mbmg.6.e68575
Gert‐Jan Jeunen, T. Lipinskaya, H. Gajduchenko, Viktoriya Golovenchik, M. Moroz, V. Rizevsky, V. Semenchenko, N. Gemmell
{"title":"Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe","authors":"Gert‐Jan Jeunen, T. Lipinskaya, H. Gajduchenko, Viktoriya Golovenchik, M. Moroz, V. Rizevsky, V. Semenchenko, N. Gemmell","doi":"10.3897/mbmg.6.e68575","DOIUrl":"https://doi.org/10.3897/mbmg.6.e68575","url":null,"abstract":"Active environmental DNA (eDNA) surveillance through species-specific amplification has shown increased sensitivity in the detection of non-indigenous species (NIS) compared to traditional approaches. When many NIS are of interest, however, active surveillance decreases in cost- and time-efficiency. Passive surveillance through eDNA metabarcoding takes advantage of the complex DNA signal in environmental samples and facilitates the simultaneous detection of multiple species. While passive eDNA surveillance has previously detected NIS, comparative studies are essential to determine the ability of eDNA metabarcoding to accurately describe the range of invasion for multiple NIS versus alternative approaches. Here, we surveyed twelve sites, covering nine rivers across Belarus for NIS with three different techniques, i.e. an ichthyological, hydrobiological and eDNA survey, whereby DNA was extracted from 500 ml surface water samples and amplified with two 16S rDNA primer assays targeting the fish and macroinvertebrate biodiversity. Nine non-indigenous fish and ten non-indigenous benthic macroinvertebrates were detected by traditional surveys, while seven NISeDNA signals were picked up, including four fish, one aquatic and two benthic macroinvertebrates. Passive eDNA surveillance extended the range of invasion further north for two invasive fish and identified a new NIS for Belarus, the freshwater jellyfish Craspedacusta sowerbii. False-negative detections for the eDNA survey might be attributed to: (i) preferential amplification of aquatic over benthic macroinvertebrates from surface water samples and (ii) an incomplete reference database. The evidence provided in this study recommends the implementation of both molecular-based and traditional approaches to maximise the probability of early detection of non-native organisms.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49562295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
COI amplicon sequence data of environmental DNA collected from the Bronx River Estuary, New York City 从纽约市布朗克斯河河口采集的环境DNA的COI扩增子序列数据
Metabarcoding and Metagenomics Pub Date : 2022-06-10 DOI: 10.3897/mbmg.6.80139
Eugenia Naro‐Maciel, Melissa R. Ingala, I. Werner, Brendan N. Reid, Allison M. Fitzgerald
{"title":"COI amplicon sequence data of environmental DNA collected from the Bronx River Estuary, New York City","authors":"Eugenia Naro‐Maciel, Melissa R. Ingala, I. Werner, Brendan N. Reid, Allison M. Fitzgerald","doi":"10.3897/mbmg.6.80139","DOIUrl":"https://doi.org/10.3897/mbmg.6.80139","url":null,"abstract":"In this data paper, we describe environmental DNA (eDNA) cytochrome c oxidase (COI) amplicon sequence data from New York City’s Bronx River Estuary. As urban systems continue to expand, describing and monitoring their biodiversity is increasingly important for sustainability. Once polluted and overexploited, New York City’s Bronx River Estuary is undergoing revitalization and restoration. To investigate and characterize the area’s diversity, we collected and sequenced river sediment and surface water samples from Hunts Point Riverside and Soundview Parks (ntotal = 48; nsediment = 25; nwater = 23). COI analysis using universal primers mlCOIintF and jgHCO2198 detected 27,328 Amplicon Sequence Variants (ASVs) from 7,653,541 sequences, and rarefaction curves reached asymptotes indicating sufficient sampling depth. Of these, eukaryotes represented 9,841ASVs from 3,562,254 sequences. At the study sites over the sampling period, community composition varied by substrate (river sediment versus surface water) and with water temperature, but not pH. The three most common phyla were Bacillariophyta (diatoms), Annelida (segmented worms), and Ochrophyta (e.g. brown and golden algae). Of the eukaryotic ASVs, we identified 614 (6.2%) to species level, including several dinoflagellates linked to Harmful Algal Blooms such as Heterocapsa spp., as well as the invasive amphipod Grandidierella japonica. The analysis detected common bivalves including blue (Mytilus edulis) and ribbed (Geukensia demissa) mussels, as well as soft-shell clams (Mya arenaria), in addition to Eastern oysters (Crassostrea virginica) that are being reintroduced to the area. Fish species undergoing restoration such as river herring (Alosa pseudoharengus, A. aestivalis) failed to be identified, although relatively common fish including Atlantic silversides (Menidia menidia), menhaden (Brevoortia tyrannus), striped bass (Morone saxatilis), and mummichogs (Fundulus heteroclitus) were found. The data highlight the utility of eDNA metabarcoding for analyzing urban estuarine biodiversity and provide a baseline for future work in the area.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45978579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study The利用公民科学在鱼类eDNA元条形码中评估沿海海洋地区的区域生物多样性:一项试点研究
Metabarcoding and Metagenomics Pub Date : 2022-05-23 DOI: 10.3897/mbmg.6.80444
M. Miya, T. Sado, S. Oka, Takehiko Fukuchi
{"title":"The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study","authors":"M. Miya, T. Sado, S. Oka, Takehiko Fukuchi","doi":"10.3897/mbmg.6.80444","DOIUrl":"https://doi.org/10.3897/mbmg.6.80444","url":null,"abstract":"To test the feasibility of a citizen science program for fish eDNA metabarcoding in coastal marine environments, we recruited six groups of voluntary citizens for a science education course at a natural history museum. We held a seminar on eDNA and a workshop for seawater sampling and on-site filtration using syringes and filter cartridges for the participants. After that, they selected single survey sites following the guidelines for conducting a safe field trip. They performed seawater sampling and on-site filtration at these sites during their summer holidays. The six selected sites unexpectedly included diverse coastal habitats within a 40 km radius, located at temperate latitudes in central Japan (~35°N). After the field trips, they returned filtered cartridges to the museum, and we extracted eDNA from the filters. We performed fish eDNA metabarcoding, along with data analysis. Consequently, we identified 140 fish species across 66 families and 118 genera from the six samples, with species richness ranging from 14 to 66. Despite its limited sample size, such a diverse taxonomic range of fish species exhibited spatial biodiversity patterns within the region, which are consistent with species distribution. These include north-south and urbanization gradients of species richness, geographic structure of the fish communities, and varying salinity preferences of the component species. This case study demonstrates the potential of fish eDNA metabarcoding as an educational and scientific tool to raise public awareness and perform large-scale citizen science initiatives encompassing regional, national, or global fauna.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44172798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in rivers kicknet采样、eDNA代谢编码和预测建模的三元组合,用于评估河流中mayflies、stoneflies和caddisflies的丰富度
Metabarcoding and Metagenomics Pub Date : 2022-05-10 DOI: 10.3897/mbmg.6.79351
F. Keck, Samuel Hürlemann, Nadine Locher, C. Stamm, Kristy Deiner, F. Altermatt
{"title":"A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in rivers","authors":"F. Keck, Samuel Hürlemann, Nadine Locher, C. Stamm, Kristy Deiner, F. Altermatt","doi":"10.3897/mbmg.6.79351","DOIUrl":"https://doi.org/10.3897/mbmg.6.79351","url":null,"abstract":"Monitoring biodiversity is essential to understand the impacts of human activities and for effective management of ecosystems. Thereby, biodiversity can be assessed through direct collection of targeted organisms, through indirect evidence of their presence (e.g. signs, environmental DNA, camera trap, etc.), or through extrapolations from species distribution and species richness models. Differences in approaches used in biodiversity assessment, however, may come with individual challenges and hinder cross-study comparability. In the context of rapidly developing techniques, we compared three different approaches in order to better understand assessments of aquatic macroinvertebrate diversity. Specifically, we compared the community composition and species richness of three orders of aquatic macroinvertebrates (mayflies, stoneflies, and caddisflies, hereafter EPT) obtained via eDNA metabarcoding and via traditional in situ kicknet sampling to catchment-level based predictions of a species richness model. We used kicknet data from 24 sites in Switzerland and compared taxonomic lists to those obtained using eDNA amplified with two different primer sets. Richness detected by these methods was compared to the independent predictions made by a statistical species richness model, that is, a generalized linear model using landscape-level features to estimate EPT diversity. Despite the ability of eDNA to consistently detect some EPT species found by traditional sampling, we found important discrepancies in community composition between the kicknet and eDNA approaches, particularly at a local scale. We found the EPT-specific primer set fwhF2/EPTDr2n, detected a greater number of targeted EPT species compared to the more general primer set mlCOIintF/HCO2198. Moreover, we found that the species richness measured by eDNA from either primer set was poorly correlated to the richness measured by kicknet sampling (Pearson correlation = 0.27) and that the richness estimated by eDNA and kicknet were poorly correlated with the prediction of the species richness model (Pearson correlation = 0.30 and 0.44, respectively). The weak relationships between the traditional kicknet sampling and eDNA with this model indicates inherent limitations in upscaling species richness estimates, and possibly a limited ability of the model to meet real world expectations. It is also possible that the number of replicates was not sufficient to detect ambiguous correlations. Future challenges include improving the accuracy and sensitivity of each approach individually, yet also acknowledging their respective limitations, in order to best meet stakeholder demands and address the biodiversity crisis we are facing.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46330002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes 淡水湖沉积物微生物群落功能潜力的宏基因组学见解
Metabarcoding and Metagenomics Pub Date : 2022-03-25 DOI: 10.3897/mbmg.6.79265
L. Biessy, J. Pearman, S. Waters, M. Vandergoes, S. Wood
{"title":"Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes","authors":"L. Biessy, J. Pearman, S. Waters, M. Vandergoes, S. Wood","doi":"10.3897/mbmg.6.79265","DOIUrl":"https://doi.org/10.3897/mbmg.6.79265","url":null,"abstract":"Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in metagenomics now make it possible to determine the functional potential of entire microbial communities. The present study investigated microbial communities and their functional potential in surface sediments collected from three lakes with differing trophic states and characteristics. Surface sediments were analysed for their nutrient and elemental contents and metagenomics and metabarcoding analysis undertaken. The nutrients content of the surface sediments did not show as distinct a gradient as water chemistry monitoring data, likely reflecting effects of other lake characteristics, in particular, depth. Metabarcoding and metagenomics revealed differing bacterial community composition and functional potential amongst lakes. Amongst the differentially abundant metabolic pathways, the most prominent were clusters in the energy and xenobiotics pathways. Differences in the energy metabolism paths of photosynthesis and oxidative phosphorylation were observed. These were most likely related to changes in the community composition and especially the presence of cyanobacteria in two of the three lakes. Xenobiotic pathways, such as those involving polycyclic aromatic hydrocarbons, were highest in the lakes with the greatest agricultural land-use in their catchment. These results highlight how microbial metagenomics can be used to gain insights into the causes of differences in trophic status amongst lakes.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42839644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Annual dynamics of eukaryotic and bacterial communities revealed by 18S and 16S rRNA metabarcoding in the coastal ecosystem of Sagami Bay, Japan 日本相模湾海岸生态系统中18S和16S rRNA代谢编码揭示的真核生物和细菌群落的年度动态
Metabarcoding and Metagenomics Pub Date : 2022-02-28 DOI: 10.3897/mbmg.6.78181
S. Sogawa, K. Tsuchiya, S. Nagai, S. Shimode, V. Kuwahara
{"title":"Annual dynamics of eukaryotic and bacterial communities revealed by 18S and 16S rRNA metabarcoding in the coastal ecosystem of Sagami Bay, Japan","authors":"S. Sogawa, K. Tsuchiya, S. Nagai, S. Shimode, V. Kuwahara","doi":"10.3897/mbmg.6.78181","DOIUrl":"https://doi.org/10.3897/mbmg.6.78181","url":null,"abstract":"Sagami Bay, Japan is influenced by both the warm Kuroshio Current and the cold Oyashio Current and rich nutrients are supplied from multiple river sources and the deep-sea, forming a dynamic ecosystem. The aim of the present study was to investigate eukaryotic and bacterial communities in the coastal waters of Sagami Bay, using 16S rRNA and 18S rRNA sequencing and to assess the seasonal and vertical dynamics in relation to physicochemical and biological conditions. Eukaryotic and bacterial communities showed synchronous seasonal and vertical changes along with environmental variability. Diversity of plankton community suspended in the surface was lower than those at the subsurface layers in both the eukaryotes and bacteria communities; however, community diversity showed different characteristics in the subsurface where the eukaryotic community at the deeper layer (100 m) was as low as the surface and highest in intermediate depth layers (10–50 m), while that of bacterial community was highest in the deeper layer (100 m). The annual variability of the coastal microbial communities was driven, not only by the seasonal changes of abiotic and biotic factors and short-term rapid changes by river water inflow and phytoplankton blooms, but also largely influenced by deep-seawater upwellings due to the unique seafloor topography.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42331076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia Development及两栖类环境DNA元条形码PCR引物评价
Metabarcoding and Metagenomics Pub Date : 2022-02-21 DOI: 10.3897/mbmg.6.76534
Masayuki K. Sakata, Mone U. Kawata, A. Kurabayashi, Takaki Kurita, Masatoshi Nakamura, Tomoyasu Shirako, R. Kakehashi, K. Nishikawa, Mohamad Yazid Hossman, T. Nishijima, Junichi Kabamoto, M. Miya, T. Minamoto
{"title":"Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia","authors":"Masayuki K. Sakata, Mone U. Kawata, A. Kurabayashi, Takaki Kurita, Masatoshi Nakamura, Tomoyasu Shirako, R. Kakehashi, K. Nishikawa, Mohamad Yazid Hossman, T. Nishijima, Junichi Kabamoto, M. Miya, T. Minamoto","doi":"10.3897/mbmg.6.76534","DOIUrl":"https://doi.org/10.3897/mbmg.6.76534","url":null,"abstract":"Biodiversity monitoring is important for the conservation of natural ecosystems in general, but particularly for amphibians, whose populations are pronouncedly declining. However, amphibians’ ecological traits (e.g. nocturnal or aquatic) often prevent their precise monitoring. Environmental DNA (eDNA) metabarcoding – analysis of extra-organismal DNA released into the environment – allows the easy and effective monitoring of the biodiversity of aquatic organisms. Here, we developed and tested the utility of original PCR primer sets. First, we conducted in vitro PCR amplification tests with universal primer candidates using total DNA extracted from amphibian tissues. Five primer sets successfully amplified the target DNA fragments (partial 16S rRNA gene fragments of 160–311 bp) from all 16 taxa tested (from the three living amphibian orders Anura, Caudata and Gymnophiona). Next, we investigated the taxonomic resolution retrieved using each primer set. The results revealed that the universal primer set “Amph16S” had the highest resolution amongst the tested sets. Finally, we applied Amph16S to the water samples collected in the field and evaluated its detection capability by comparing the species detected using eDNA and physical survey (capture-based sampling and visual survey) in multiple agricultural ecosystems across Japan (160 sites in 10 areas). The eDNA metabarcoding with Amph16S detected twice as many species as the physical surveys (16 vs. 8 species, respectively), indicating the effectiveness of Amph16S in biodiversity monitoring and ecological research for amphibian communities.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47897464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Comparing PCR-generated artifacts of different polymerases for improved accuracy of DNA metabarcoding 比较不同聚合酶的PCR产生的伪影以提高DNA代谢编码的准确性
Metabarcoding and Metagenomics Pub Date : 2022-02-21 DOI: 10.3897/mbmg.6.77704
S. Nagai, Sirje Sildever, N. Nishi, Satoshi Tazawa, Leila Basti, Takanori Kobayashi, Y. Ishino
{"title":"Comparing PCR-generated artifacts of different polymerases for improved accuracy of DNA metabarcoding","authors":"S. Nagai, Sirje Sildever, N. Nishi, Satoshi Tazawa, Leila Basti, Takanori Kobayashi, Y. Ishino","doi":"10.3897/mbmg.6.77704","DOIUrl":"https://doi.org/10.3897/mbmg.6.77704","url":null,"abstract":"Accuracy of PCR amplification is vital for obtaining reliable amplicon-sequencing results by metabarcoding. Here, we performed a comparative analysis of error profiles in the PCR products by 14 different PCR kits using a mock eukaryotic community DNA sample mimicking metabarcoding analysis. To prepare a mock eukaryotic community from the marine environment, equal amounts of plasmid DNA from 40 microalgal species were mixed and used for amplicon-sequencing by a high-throughput sequencing approach. To compare the differences in PCR kits used for this experiment, we focused on the following seven parameters: 1) Quality, 2) Chimera, 3) Blast top hit accuracy, 4) Deletion, 5) Insertion, 6) Base substitution and 7) Amplification bias amongst species. The results showed statistically significant differences (p < 0.05) for all of the seven parameters depending on the PCR kits used. These differences may result from the different DNA polymerases included in each kit, although the result can also be influenced by PCR reaction conditions. Simultaneous analysis of several parameters suggested that kits containing KOD plus Neo (TOYOBO) and HotStart Taq DNA polymerase (BiONEER, CA, US) at the annealing temperature of 65 °C displayed better results in terms of parameters associated with chimeras, top hit similarity and deletions.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45976575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies Shifts储存沉积物中DNA产量和生物群落组成:对古基因组学研究的影响
Metabarcoding and Metagenomics Pub Date : 2022-02-01 DOI: 10.3897/mbmg.6.78128
K. Brasell, X. Pochon, J. Howarth, J. Pearman, A. Zaiko, Lucy Thompson, M. Vandergoes, K. Simon, S. Wood
{"title":"Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies","authors":"K. Brasell, X. Pochon, J. Howarth, J. Pearman, A. Zaiko, Lucy Thompson, M. Vandergoes, K. Simon, S. Wood","doi":"10.3897/mbmg.6.78128","DOIUrl":"https://doi.org/10.3897/mbmg.6.78128","url":null,"abstract":"Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cores are often refrigerated (4 °C) for weeks or months before subsampling. We investigated the impact of storage time on changes in DNA (purified or as cell lysate) concentrations and shifts in biological communities following storage of lake surface sediment at 4 °C for up to 24 weeks. Sediment samples (~ 0.22 g, in triplicate per time point) were spiked with purified DNA (100 or 200 ng) or lysate from a brackish water cyanobacterium that produces the cyanotoxin nodularin or non-spiked. Samples were analysed every 1–4 weeks over a 24-week period. Droplet digital PCR showed no significant decrease in the target gene (nodularin synthetase – subunit F; ndaF) over the 24-week period for samples spiked with purified DNA, while copy number decreased by more than half in cell lysate-spiked samples. There was significant change over time in bacteria and eukaryotic community composition assessed using metabarcoding. Amongst bacteria, the cyanobacterial signal became negligible after 5 weeks while Proteobacteria increased. In the eukaryotic community, Cercozoa became dominant after 6 weeks. These data demonstrate that DNA yields and community composition data shift significantly when sediments are stored chilled for more than 5 weeks. This highlights the need for rapid subsampling and appropriate storage of sediment core samples for paleogenomic studies.","PeriodicalId":18374,"journal":{"name":"Metabarcoding and Metagenomics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46370737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信