Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Chantal Pellegrini, Matthias Keicher, Ege Özsoy, N. Navab
{"title":"Rad-ReStruct: A Novel VQA Benchmark and Method for Structured Radiology Reporting","authors":"Chantal Pellegrini, Matthias Keicher, Ege Özsoy, N. Navab","doi":"10.48550/arXiv.2307.05766","DOIUrl":"https://doi.org/10.48550/arXiv.2307.05766","url":null,"abstract":"Radiology reporting is a crucial part of the communication between radiologists and other medical professionals, but it can be time-consuming and error-prone. One approach to alleviate this is structured reporting, which saves time and enables a more accurate evaluation than free-text reports. However, there is limited research on automating structured reporting, and no public benchmark is available for evaluating and comparing different methods. To close this gap, we introduce Rad-ReStruct, a new benchmark dataset that provides fine-grained, hierarchically ordered annotations in the form of structured reports for X-Ray images. We model the structured reporting task as hierarchical visual question answering (VQA) and propose hi-VQA, a novel method that considers prior context in the form of previously asked questions and answers for populating a structured radiology report. Our experiments show that hi-VQA achieves competitive performance to the state-of-the-art on the medical VQA benchmark VQARad while performing best among methods without domain-specific vision-language pretraining and provides a strong baseline on Rad-ReStruct. Our work represents a significant step towards the automated population of structured radiology reports and provides a valuable first benchmark for future research in this area. Our dataset and code is available at https://github.com/ChantalMP/Rad-ReStruct.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"44 6","pages":"409-419"},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91431853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Sarfati, Alexandre Bône, Marc-Michel Roh'e, P. Gori, I. Bloch
{"title":"Weakly-supervised positional contrastive learning: application to cirrhosis classification","authors":"Emma Sarfati, Alexandre Bône, Marc-Michel Roh'e, P. Gori, I. Bloch","doi":"10.48550/arXiv.2307.04617","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04617","url":null,"abstract":"Large medical imaging datasets can be cheaply and quickly annotated with low-confidence, weak labels (e.g., radiological scores). Access to high-confidence labels, such as histology-based diagnoses, is rare and costly. Pretraining strategies, like contrastive learning (CL) methods, can leverage unlabeled or weakly-annotated datasets. These methods typically require large batch sizes, which poses a difficulty in the case of large 3D images at full resolution, due to limited GPU memory. Nevertheless, volumetric positional information about the spatial context of each 2D slice can be very important for some medical applications. In this work, we propose an efficient weakly-supervised positional (WSP) contrastive learning strategy where we integrate both the spatial context of each 2D slice and a weak label via a generic kernel-based loss function. We illustrate our method on cirrhosis prediction using a large volume of weakly-labeled images, namely radiological low-confidence annotations, and small strongly-labeled (i.e., high-confidence) datasets. The proposed model improves the classification AUC by 5% with respect to a baseline model on our internal dataset, and by 26% on the public LIHC dataset from the Cancer Genome Atlas. The code is available at: https://github.com/Guerbet-AI/wsp-contrastive.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"47 1","pages":"227-237"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88584959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyriaki-Margarita Bintsi, V. Baltatzis, Rolandos Alexandros Potamias, A. Hammers, D. Rueckert
{"title":"Multimodal brain age estimation using interpretable adaptive population-graph learning","authors":"Kyriaki-Margarita Bintsi, V. Baltatzis, Rolandos Alexandros Potamias, A. Hammers, D. Rueckert","doi":"10.48550/arXiv.2307.04639","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04639","url":null,"abstract":"Brain age estimation is clinically important as it can provide valuable information in the context of neurodegenerative diseases such as Alzheimer's. Population graphs, which include multimodal imaging information of the subjects along with the relationships among the population, have been used in literature along with Graph Convolutional Networks (GCNs) and have proved beneficial for a variety of medical imaging tasks. A population graph is usually static and constructed manually using non-imaging information. However, graph construction is not a trivial task and might significantly affect the performance of the GCN, which is inherently very sensitive to the graph structure. In this work, we propose a framework that learns a population graph structure optimized for the downstream task. An attention mechanism assigns weights to a set of imaging and non-imaging features (phenotypes), which are then used for edge extraction. The resulting graph is used to train the GCN. The entire pipeline can be trained end-to-end. Additionally, by visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph. We use the UK Biobank, which provides a large variety of neuroimaging and non-imaging phenotypes, to evaluate our method on brain age regression and classification. The proposed method outperforms competing static graph approaches and other state-of-the-art adaptive methods. We further show that the assigned attention scores indicate that there are both imaging and non-imaging phenotypes that are informative for brain age estimation and are in agreement with the relevant literature.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"63 1","pages":"195-204"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89699032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng Zhang, Xiaolei Zhang, Yaolei Qi, Guanyu Yang
{"title":"Partial Vessels Annotation-based Coronary Artery Segmentation with Self-training and Prototype Learning","authors":"Zheng Zhang, Xiaolei Zhang, Yaolei Qi, Guanyu Yang","doi":"10.48550/arXiv.2307.04472","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04472","url":null,"abstract":"Coronary artery segmentation on coronary-computed tomography angiography (CCTA) images is crucial for clinical use. Due to the expertise-required and labor-intensive annotation process, there is a growing demand for the relevant label-efficient learning algorithms. To this end, we propose partial vessels annotation (PVA) based on the challenges of coronary artery segmentation and clinical diagnostic characteristics. Further, we propose a progressive weakly supervised learning framework to achieve accurate segmentation under PVA. First, our proposed framework learns the local features of vessels to propagate the knowledge to unlabeled regions. Subsequently, it learns the global structure by utilizing the propagated knowledge, and corrects the errors introduced in the propagation process. Finally, it leverages the similarity between feature embeddings and the feature prototype to enhance testing outputs. Experiments on clinical data reveals that our proposed framework outperforms the competing methods under PVA (24.29% vessels), and achieves comparable performance in trunk continuity with the baseline model using full annotation (100% vessels).","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"16 1","pages":"297-306"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90997631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yicheng Wu, Zhonghua Wu, Hengcan Shi, Bjoern Picker, W. Chong, Jianfei Cai
{"title":"CoactSeg: Learning from Heterogeneous Data for New Multiple Sclerosis Lesion Segmentation","authors":"Yicheng Wu, Zhonghua Wu, Hengcan Shi, Bjoern Picker, W. Chong, Jianfei Cai","doi":"10.48550/arXiv.2307.04513","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04513","url":null,"abstract":"New lesion segmentation is essential to estimate the disease progression and therapeutic effects during multiple sclerosis (MS) clinical treatments. However, the expensive data acquisition and expert annotation restrict the feasibility of applying large-scale deep learning models. Since single-time-point samples with all-lesion labels are relatively easy to collect, exploiting them to train deep models is highly desirable to improve new lesion segmentation. Therefore, we proposed a coaction segmentation (CoactSeg) framework to exploit the heterogeneous data (i.e., new-lesion annotated two-time-point data and all-lesion annotated single-time-point data) for new MS lesion segmentation. The CoactSeg model is designed as a unified model, with the same three inputs (the baseline, follow-up, and their longitudinal brain differences) and the same three outputs (the corresponding all-lesion and new-lesion predictions), no matter which type of heterogeneous data is being used. Moreover, a simple and effective relation regularization is proposed to ensure the longitudinal relations among the three outputs to improve the model learning. Extensive experiments demonstrate that utilizing the heterogeneous data and the proposed longitudinal relation constraint can significantly improve the performance for both new-lesion and all-lesion segmentation tasks. Meanwhile, we also introduce an in-house MS-23v1 dataset, including 38 Oceania single-time-point samples with all-lesion labels. Codes and the dataset are released at https://github.com/ycwu1997/CoactSeg.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"24 1","pages":"3-13"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87486424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoxuan Che, Yu-Tsen Cheng, Haibo Jin, Haoxing Chen
{"title":"Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains","authors":"Haoxuan Che, Yu-Tsen Cheng, Haibo Jin, Haoxing Chen","doi":"10.48550/arXiv.2307.04378","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04378","url":null,"abstract":"Diabetic Retinopathy (DR) is a common complication of diabetes and a leading cause of blindness worldwide. Early and accurate grading of its severity is crucial for disease management. Although deep learning has shown great potential for automated DR grading, its real-world deployment is still challenging due to distribution shifts among source and target domains, known as the domain generalization problem. Existing works have mainly attributed the performance degradation to limited domain shifts caused by simple visual discrepancies, which cannot handle complex real-world scenarios. Instead, we present preliminary evidence suggesting the existence of three-fold generalization issues: visual and degradation style shifts, diagnostic pattern diversity, and data imbalance. To tackle these issues, we propose a novel unified framework named Generalizable Diabetic Retinopathy Grading Network (GDRNet). GDRNet consists of three vital components: fundus visual-artifact augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and domain-class-aware re-balancing (DCR). FundusAug generates realistic augmented images via visual transformation and image degradation, while DahLoss jointly leverages pixel-level consistency and image-level semantics to capture the diverse diagnostic patterns and build generalizable feature representations. Moreover, DCR mitigates the data imbalance from a domain-class view and avoids undesired over-emphasis on rare domain-class pairs. Finally, we design a publicly available benchmark for fair evaluations. Extensive comparison experiments against advanced methods and exhaustive ablation studies demonstrate the effectiveness and generalization ability of GDRNet.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"36 1","pages":"430-440"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87632905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kazuya Nishimura, Ami Katanaya, S. Chuma, Ryoma Bise
{"title":"Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping","authors":"Kazuya Nishimura, Ami Katanaya, S. Chuma, Ryoma Bise","doi":"10.48550/arXiv.2307.04113","DOIUrl":"https://doi.org/10.48550/arXiv.2307.04113","url":null,"abstract":"Detection of mitosis events plays an important role in biomedical research. Deep-learning-based mitosis detection methods have achieved outstanding performance with a certain amount of labeled data. However, these methods require annotations for each imaging condition. Collecting labeled data involves time-consuming human labor. In this paper, we propose a mitosis detection method that can be trained with partially annotated sequences. The base idea is to generate a fully labeled dataset from the partial labels and train a mitosis detection model with the generated dataset. First, we generate an image pair not containing mitosis events by frame-order flipping. Then, we paste mitosis events to the image pair by alpha-blending pasting and generate a fully labeled dataset. We demonstrate the performance of our method on four datasets, and we confirm that our method outperforms other comparisons which use partially labeled sequences.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"81 1","pages":"483-492"},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73901640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yishan Zhong, Mengqiu Xu, K. Liang, Kaixin Chen, Ming Wu
{"title":"Ariadne's Thread: Using Text Prompts to Improve Segmentation of Infected Areas from Chest X-ray images","authors":"Yishan Zhong, Mengqiu Xu, K. Liang, Kaixin Chen, Ming Wu","doi":"10.48550/arXiv.2307.03942","DOIUrl":"https://doi.org/10.48550/arXiv.2307.03942","url":null,"abstract":"Segmentation of the infected areas of the lung is essential for quantifying the severity of lung disease like pulmonary infections. Existing medical image segmentation methods are almost uni-modal methods based on image. However, these image-only methods tend to produce inaccurate results unless trained with large amounts of annotated data. To overcome this challenge, we propose a language-driven segmentation method that uses text prompt to improve to the segmentation result. Experiments on the QaTa-COV19 dataset indicate that our method improves the Dice score by 6.09% at least compared to the uni-modal methods. Besides, our extended study reveals the flexibility of multi-modal methods in terms of the information granularity of text and demonstrates that multi-modal methods have a significant advantage over image-only methods in terms of the size of training data required.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"9 1","pages":"724-733"},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72734600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Feldman, Miguel Fainstein, Viviana Siless, C. Delrieux, Emmanuel Iarussi
{"title":"VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis","authors":"Paula Feldman, Miguel Fainstein, Viviana Siless, C. Delrieux, Emmanuel Iarussi","doi":"10.48550/arXiv.2307.03592","DOIUrl":"https://doi.org/10.48550/arXiv.2307.03592","url":null,"abstract":"We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"11 Suppl 6 1","pages":"67-76"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83071266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Graham, W. H. Pinaya, P. Wright, Petru-Daniel Tudosiu, Y. Mah, J. Teo, H. Jäger, D. Werring, P. Nachev, S. Ourselin, M. Cardoso
{"title":"Unsupervised 3D out-of-distribution detection with latent diffusion models","authors":"M. Graham, W. H. Pinaya, P. Wright, Petru-Daniel Tudosiu, Y. Mah, J. Teo, H. Jäger, D. Werring, P. Nachev, S. Ourselin, M. Cardoso","doi":"10.48550/arXiv.2307.03777","DOIUrl":"https://doi.org/10.48550/arXiv.2307.03777","url":null,"abstract":"Methods for out-of-distribution (OOD) detection that scale to 3D data are crucial components of any real-world clinical deep learning system. Classic denoising diffusion probabilistic models (DDPMs) have been recently proposed as a robust way to perform reconstruction-based OOD detection on 2D datasets, but do not trivially scale to 3D data. In this work, we propose to use Latent Diffusion Models (LDMs), which enable the scaling of DDPMs to high-resolution 3D medical data. We validate the proposed approach on near- and far-OOD datasets and compare it to a recently proposed, 3D-enabled approach using Latent Transformer Models (LTMs). Not only does the proposed LDM-based approach achieve statistically significant better performance, it also shows less sensitivity to the underlying latent representation, more favourable memory scaling, and produces better spatial anomaly maps. Code is available at https://github.com/marksgraham/ddpm-ood","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"22 11 1","pages":"446-456"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82918567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}