mAbsPub Date : 2024-01-01Epub Date: 2024-07-25DOI: 10.1080/19420862.2024.2383013
Siva Charan Devanaboyina, Peng Li, Edward L LaGory, Carrie Poon-Andersen, Kevin D Cook, Marcus Soto, Zhe Wang, Khue Dang, Craig Uyeda, Ryan B Case, Veena A Thomas, Ronya Primack, Manuel Ponce, Mei Di, Brian Ouyang, Joelle Kaner, Sheung Kwan Lam, Mina Mostafavi
{"title":"Rapid depletion of \"catch-and-release\" anti-ASGR1 antibody in vivo.","authors":"Siva Charan Devanaboyina, Peng Li, Edward L LaGory, Carrie Poon-Andersen, Kevin D Cook, Marcus Soto, Zhe Wang, Khue Dang, Craig Uyeda, Ryan B Case, Veena A Thomas, Ronya Primack, Manuel Ponce, Mei Di, Brian Ouyang, Joelle Kaner, Sheung Kwan Lam, Mina Mostafavi","doi":"10.1080/19420862.2024.2383013","DOIUrl":"10.1080/19420862.2024.2383013","url":null,"abstract":"<p><p>Targeting antigens with antibodies exhibiting pH/Ca<sup>2+</sup>-dependent binding against an antigen is an attractive strategy to mitigate target-mediated disposition and antigen buffering. Studies have reported improved serum exposure of antibodies exhibiting pH/Ca<sup>2+</sup>-binding against membrane-bound receptors. Asialoglycoprotein receptor 1 (ASGR1) is a membrane-bound receptor primarily localized in hepatocytes. With a high expression level of approximately one million receptors per cell, high turnover, and rapid recycling, targeting this receptor with a conventional antibody is a challenge. In this study, we identified an antibody exhibiting pH/Ca<sup>2+</sup>-dependent binding to ASGR1 and generated antibody variants with increased binding to neonatal crystallizable fragment receptor (FcRn). Serum exposures of the generated anti-ASGR1 antibodies were analyzed in transgenic mice expressing human FcRn. Contrary to published reports of increased serum exposure of pH/Ca<sup>2+</sup>-dependent antibodies, the pH/Ca<sup>2+</sup>-dependent anti-ASGR1 antibody had rapid serum clearance in comparison to a conventional anti-ASGR1 antibody. We conducted sub-cellular trafficking studies of the anti-ASGR1 antibodies along with receptor quantification analysis for mechanistic understanding of the rapid serum clearance of pH/Ca<sup>2+</sup>-dependent anti-ASGR1 antibody. The findings from our study provide valuable insights in identifying the antigens, especially membrane bound, that may benefit from targeting with pH/Ca<sup>2+</sup>-dependent antibodies to obtain increased serum exposure.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2383013"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-11-14DOI: 10.1080/19420862.2024.2427771
Tobias M Prass, Patrick Garidel, Lars V Schäfer, Michaela Blech
{"title":"Residue-resolved insights into the stabilization of therapeutic proteins by excipients: A case study of two monoclonal antibodies with arginine and glutamate.","authors":"Tobias M Prass, Patrick Garidel, Lars V Schäfer, Michaela Blech","doi":"10.1080/19420862.2024.2427771","DOIUrl":"10.1080/19420862.2024.2427771","url":null,"abstract":"<p><p>Protein formulation development relies on the selection of excipients that inhibit protein-protein interactions preventing aggregation. Empirical strategies involve screening many excipient and buffer combinations by physicochemical characterization using forced degradation or temperature-induced stress, mostly under accelerated conditions. Such methods do not readily provide information on the inter- and intramolecular interactions responsible for the effects of excipients. Here, we describe a combined experimental and computational approach for investigating the effect of protein-excipient interactions on formulation stability, which allows the identification of preferential interaction sites and thus can aid in the selection of excipients to be experimentally screened. Model systems composed of two marketed therapeutic IgG1 monoclonal antibodies with identical Fc domain sequences, trastuzumab and omalizumab, were investigated with commonly used excipients arginine, glutamate, and equimolar arginine/glutamate mixtures. Protein-excipient interactions were studied using all-atom molecular dynamics (MD) simulations, which show accumulation of the excipients at specific antibody regions. Preferential excipient-interaction sites were particularly found for charged and aromatic residues and in the complementary-determining regions, with more pronounced arginine contacts for omalizumab than trastuzumab. These computational findings are in line with the more pronounced stabilizing effects of arginine observed in the long-term storage stability study. Furthermore, the aggregation and solubility propensity predicted by commonly used <i>in silico</i> tools do not align with the preferential excipient-interaction sites identified by the MD simulations, suggesting that different physicochemical mechanisms are at play.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2427771"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seq2scFv: a toolkit for the comprehensive analysis of display libraries from long-read sequencing platforms.","authors":"Marianne Bachmann Salvy, Luca Santuari, Emanuel Schmid-Siegert, Nikolaos Lykoskoufis, Ioannis Xenarios, Bulak Arpat","doi":"10.1080/19420862.2024.2408344","DOIUrl":"10.1080/19420862.2024.2408344","url":null,"abstract":"<p><p>Antibodies have emerged as the leading class of biotherapeutics, yet traditional screening methods face significant time and resource challenges in identifying lead candidates. Integrating high-throughput sequencing with computational approaches marks a pivotal advancement in antibody discovery, expanding the antibody space to explore. In this context, a major breakthrough has been the full-length sequencing of single-chain variable fragments (scFvs) used in <i>in vitro</i> display libraries. However, few tools address the task of annotating the paired heavy and light chain variable domains (VH and VL), which is the primary advantage of full-scFv sequencing. To address this methodological gap, we introduce Seq2scFv, a novel open-source toolkit designed for analyzing <i>in vitro</i> display libraries from long-read sequencing platforms. Seq2scFv facilitates the identification and thorough characterization of V(D)J recombination in both VH and VL regions. In addition to providing annotated scFvs, translated sequences and numbered chains, Seq2scFv enables linker inference and characterization, sequence encoding with unique identifiers and quantification of identical sequences across selection rounds, thereby simplifying enrichment identification. With its versatile and standalone functionality, we anticipate that the implementation of Seq2scFv tools in antibody discovery pipelines will efficiently expedite the full characterization of display libraries and potentially facilitate the identification of high-affinity antibody candidates.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2408344"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-10-21DOI: 10.1080/19420862.2024.2415333
Kaori Mukai, Robert Cost, Xin Sheen Zhang, Emily Condiff, Joanne Cotton, Xiaohua Liu, Ekaterina Boudanova, Björn Niebel, Peter Piepenhagen, Xinming Cai, Anna Park, Qun Zhou
{"title":"Targeted protein degradation through site-specific antibody conjugation with mannose 6-phosphate glycan.","authors":"Kaori Mukai, Robert Cost, Xin Sheen Zhang, Emily Condiff, Joanne Cotton, Xiaohua Liu, Ekaterina Boudanova, Björn Niebel, Peter Piepenhagen, Xinming Cai, Anna Park, Qun Zhou","doi":"10.1080/19420862.2024.2415333","DOIUrl":"10.1080/19420862.2024.2415333","url":null,"abstract":"<p><p>Recent developments in targeted protein degradation have provided great opportunities to eliminating extracellular protein targets using potential therapies with unique mechanisms of action and pharmacology. Among them, Lysosome-Targeting Chimeras (LYTACs) acting through mannose 6-phosphate receptor (M6PR) have been shown to facilitate degradation of several soluble and membrane-associated proteins in lysosomes with high efficiency. Herein we have developed a novel site-specific antibody conjugation approach to generate antibody mannose 6-phosphate (M6P) conjugates. The method uses a high affinity synthetic M6P glycan, bisM6P, that is coupled to an Fc-engineered antibody NNAS. This mutant without any effector function was generated by switching the native glycosylation site from position 297 to 298 converting non-sialylated structures to highly sialylated N-glycans. The sialic acid of the glycans attached to Asn298 in the engineered antibody was selectively conjugated to bisM6P without chemoenzymatic modification, which is often used for site-specific antibody conjugation through glycans. The conjugate is mainly homogeneous by analysis using mass spectrometry, typically with one or two glycans coupled. The M6P-conjugated antibody against a protein of interest (POI) efficiently internalized targeted soluble proteins, such as human tumor necrosis factor (TNF), in both cancer cell lines and human immune cells, through the endo-lysosomal pathway as demonstrated by confocal microscopy and flow cytometry. TNF in cell culture media was significantly depleted after the cells were incubated with the M6P-conjugated antibody. TNF internalization is mediated through M6PR, and it is correlated well with cell surface expression of cation-independent M6PR (CI-MPR) in immune cells. A significant amount of CI-MPR remains on the cell surface, while internalized TNF is degraded in lysosomes. Thus, the antibody-M6P conjugate is highly efficient in inducing internalization and subsequent lysosome-mediated protein degradation. Our platform provides a unique method for producing biologics-based degraders that may be used to treat diseases through event-driven pharmacology, thereby addressing unmet medical needs.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2415333"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the mechanisms of serplulimab: a distinctive anti-PD-1 monoclonal antibody, in combination with a TIGIT or LAG3 inhibitor in preclinical tumor immunotherapy studies.","authors":"Yizhou Zhang, Ruicheng Wei, Ge Song, Xinyi Yang, Mengli Zhang, Wei Liu, Aiying Xiong, Xuehan Zhang, Qianhao Li, Wan-Jen Yang, Chencheng Han, Rui Liu, Chen Hu, Qingyu Wang, Jun Zhu, Yongqiang Shan","doi":"10.1080/19420862.2024.2419838","DOIUrl":"10.1080/19420862.2024.2419838","url":null,"abstract":"<p><p>With more than 20 anti-PD-1/PD-L1 antibodies currently marketed, anti-PD-1 therapy has become a cornerstone of tumor immunotherapy. These agents, however, exhibit notable disparities in their characteristics and clinical performance. For instance, in the field of small cell lung cancer (SCLC) where the majority of anti-PD-1 antibodies have yielded limited success, serplulimab produced impressive survival improvements and was approved for this indication by China's National Medical Products Administration. Serplulimab's marketing authorization application also received a positive opinion from the European Medicines Agency. Nevertheless, the molecular mechanism underpinning serplulimab's superiority over its competitors remains elusive. We characterized the differences between serplulimab with approved PD-1/PD-L1 inhibitors (pembrolizumab and nivolumab) in terms of their binding features and functions <i>in vitro</i> and anti-tumor activity <i>in vivo</i>. Cellular pathways underlying the efficacy of serplulimab were also investigated. In comparison to competitors, serplulimab robustly induces PD-1 receptor endocytosis while fostering weaker PD-1-CD28 cis interactions. This phenomenon could mitigate the dephosphorylation of CD28 by SHP2, thereby facilitating sustained and robust T cell activation. While serplulimab and pembrolizumab exhibited similar performance <i>in vitro</i> and <i>in vivo</i> studies, serplulimab consistently demonstrated superior tumor killing efficacy compared to pembrolizumab upon co-administration with anti-TIGIT or anti-LAG3 inhibitors. Mechanistically, the serplulimab combination effectively reduces tumor microenvironment Treg cell populations, augments effector and memory T cell populations, and more potently modulates genes associated with diverse facets of the immune system, surpassing the effects of the pembrolizumab combination. In summary, our data underscore serplulimab as a differentiated PD-1 monoclonal antibody with best-in-class therapeutic potential.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2419838"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-06-20DOI: 10.1080/19420862.2024.2362775
Mark Hutchinson, Jeffrey A Ruffolo, Nantaporn Haskins, Michael Iannotti, Giuliana Vozza, Tony Pham, Nurjahan Mehzabeen, Harini Shandilya, Keith Rickert, Rebecca Croasdale-Wood, Melissa Damschroder, Ying Fu, Andrew Dippel, Jeffrey J Gray, Gilad Kaplan
{"title":"Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen.","authors":"Mark Hutchinson, Jeffrey A Ruffolo, Nantaporn Haskins, Michael Iannotti, Giuliana Vozza, Tony Pham, Nurjahan Mehzabeen, Harini Shandilya, Keith Rickert, Rebecca Croasdale-Wood, Melissa Damschroder, Ying Fu, Andrew Dippel, Jeffrey J Gray, Gilad Kaplan","doi":"10.1080/19420862.2024.2362775","DOIUrl":"10.1080/19420862.2024.2362775","url":null,"abstract":"<p><p>Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. <i>In silico</i> tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and <i>in silico</i> antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (T<sub>onset</sub>, T<sub>m</sub>, T<sub>agg</sub>), affinity (K<sub>D</sub>) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in T<sub>m1</sub>), with most clones retaining the favorable developability profile of the parental antibody. Additional <i>in silico</i> tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of <i>in silico</i> antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2362775"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-07-30DOI: 10.1080/19420862.2024.2379903
Linlin Dong, Susan Chen, Konstantin Piatkov, Dong Wei, Mark G Qian
{"title":"Quantifying LAGA mutated mouse IgG2a monoclonal antibody with a rapid pepsin digestion enabled immunoaffinity LC/MS/MS assay.","authors":"Linlin Dong, Susan Chen, Konstantin Piatkov, Dong Wei, Mark G Qian","doi":"10.1080/19420862.2024.2379903","DOIUrl":"10.1080/19420862.2024.2379903","url":null,"abstract":"<p><p>A sensitive and specific bioanalytical method was required to measure the exposure of a LAGA-mutated surrogate mouse IgG2a monoclonal antibody in mouse plasma, but the lack of highly specific reagents for the LAGA mutant hindered the development of a ligand-binding assay. Equally problematic is that no sensitive unique tryptic peptides suitable for quantitative mass spectrometric analysis could be identified in the mIgG2a complementarity-determining regions. To overcome these challenges, a trypsin alternative pepsin, an aspartic protease, was systematically investigated for its use in digesting the mutated mIgG2a antibody to allow generation of signature peptides for the bioanalytical quantification purpose. After a series of evaluations, a rapid one-hour pepsin digestion protocol was established for the mutated Fc backbone. Consequently, a new pepsin digestion-based liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was successfully developed to support the mouse pharmacokinetic (PK) sample analysis. In brief, robust and reproducible C-terminal cleavage of both leucine and phenylalanine near the double mutation site of the mutated mIgG2a was accomplished at pH ≤2 and 37°C. Combined with a commercially available rat anti-mIgG2a heavy-chain antibody, the established immunoaffinity LC/MS/MS assay achieved a limit of quantitation of 20 ng/mL in the dynamic range of interest with satisfactory assay precision and accuracy. The successful implementation of this novel approach in discovery PK studies eliminates the need for tedious and costly generation of specific immunocapturing reagents for the LAGA mutants. The approach should be widely applicable for developing popular LAGA mutant-based biological therapeutics.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2379903"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-01-03DOI: 10.1080/19420862.2023.2297451
Jennifer L Schwedler, Maxwell A Stefan, Christine E Thatcher, Peter R McIlroy, Anupama Sinha, Ashlee M Phillips, Christopher A Sumner, Colleen M Courtney, Christina Y Kim, Dina R Weilhammer, Brooke Harmon
{"title":"Therapeutic efficacy of a potent anti-Venezuelan equine encephalitis virus antibody is contingent on Fc effector function.","authors":"Jennifer L Schwedler, Maxwell A Stefan, Christine E Thatcher, Peter R McIlroy, Anupama Sinha, Ashlee M Phillips, Christopher A Sumner, Colleen M Courtney, Christina Y Kim, Dina R Weilhammer, Brooke Harmon","doi":"10.1080/19420862.2023.2297451","DOIUrl":"10.1080/19420862.2023.2297451","url":null,"abstract":"<p><p>The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential <i>in vitro</i> kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The <i>in vivo</i> efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2297451"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mAbsPub Date : 2024-01-01Epub Date: 2024-02-14DOI: 10.1080/19420862.2024.2309685
Wei-Ching Liang, Hongkang Xi, Dawei Sun, Luigi D'Ascenzo, Jonathan Zarzar, Nicole Stephens, Ryan Cook, Yinyin Li, Zhengmao Ye, Marissa Matsumoto, Jian Payandeh, Matthieu Masureel, Yan Wu
{"title":"Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability.","authors":"Wei-Ching Liang, Hongkang Xi, Dawei Sun, Luigi D'Ascenzo, Jonathan Zarzar, Nicole Stephens, Ryan Cook, Yinyin Li, Zhengmao Ye, Marissa Matsumoto, Jian Payandeh, Matthieu Masureel, Yan Wu","doi":"10.1080/19420862.2024.2309685","DOIUrl":"10.1080/19420862.2024.2309685","url":null,"abstract":"<p><p>Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2309685"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}