Volume 8: Seismic Engineering最新文献

筛选
英文 中文
Numerical Surrogate Model of a Coupled Tank-Piping System for Seismic Fragility Analysis With Synthetic Ground Motions
Volume 8: Seismic Engineering Pub Date : 1900-01-01 DOI: 10.1115/pvp2019-93685
R. D. Filippo, G. Abbiati, O. Sayginer, P. Covi, O. Bursi, F. Paolacci
{"title":"Numerical Surrogate Model of a Coupled Tank-Piping System for Seismic Fragility Analysis With Synthetic Ground Motions","authors":"R. D. Filippo, G. Abbiati, O. Sayginer, P. Covi, O. Bursi, F. Paolacci","doi":"10.1115/pvp2019-93685","DOIUrl":"https://doi.org/10.1115/pvp2019-93685","url":null,"abstract":"\u0000 Seismic risk evaluation of coupled systems of industrial plants often needs the implementation of complex finite element models to consider their multicomponent nature. These models typically rely on significant computational resources. Moreover, the relationships between seismic action, system response and relevant damage levels are often characterized by a high level of nonlinearity, thus requiring a solid background of experimental data. Furthermore, fragility analyses depend on the adoption of a significant number of seismic waveforms generally not available when the analysis is site-specific. To propose a methodology able to manage these issues, we present a possible approach for a seismic reliability analysis of a coupled tank-piping system. The novelty of this approach lies in the adoption of artificial accelerograms, FE models and experimental hybrid simulations to evaluate a surrogate meta-model of our system. First, to obtain the necessary input for a stochastic ground motion model able to generate synthetic ground motions, a disaggregation analysis of the seismic hazard is performed. Hereafter, we reduce the space of parameters of the stochastic ground motion model by means of a global sensitivity analysis upon the seismic response of our system. Hence, we generate a large set of synthetic ground motions and select, among them, a few signals for experimental hybrid simulations. In detail, the hybrid simulator is composed by a numerical substructure to predict the sliding response of a steel tank, and a physical substructure made of a realistic piping network. Furthermore, we use these experimental results to calibrate a refined ANSYS FEM. More precisely, we focus on tensile hoop strains in elbow pipes as a leading cause for leakage, monitoring them with strain gauges. Thus, we present the procedure to evaluate a numerical Kriging meta-model of the coupled system based on both experimental and finite element model results. This model will be adopted in a future development to carry out a seismic fragility analysis.","PeriodicalId":180537,"journal":{"name":"Volume 8: Seismic Engineering","volume":"56 79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124317507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信