Journal of Thermoplastic Composite Materials最新文献

筛选
英文 中文
Investigation of wettability and wear properties on 3D printed Polylactic acid/Molybdenum disulfide-Silicon carbide polymeric composite for sustainable biomedical applications 用于可持续生物医学应用的 3D 打印聚乳酸/二硫化钼-碳化硅聚合物复合材料的润湿性和磨损特性研究
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-01 DOI: 10.1177/08927057241243356
Rashi Tyagi, Nishant Ranjan, Monty Kumar, Vinay Kumar, Ashutosh Tripathi, Ranvijay Kumar
{"title":"Investigation of wettability and wear properties on 3D printed Polylactic acid/Molybdenum disulfide-Silicon carbide polymeric composite for sustainable biomedical applications","authors":"Rashi Tyagi, Nishant Ranjan, Monty Kumar, Vinay Kumar, Ashutosh Tripathi, Ranvijay Kumar","doi":"10.1177/08927057241243356","DOIUrl":"https://doi.org/10.1177/08927057241243356","url":null,"abstract":"In the present work, investigations of the wettability, wear, and morphological study on 3D-printed polylactic acid (PLA)/molybdenum disulfide (MoS<jats:sub>2</jats:sub>)-silicon carbide (SiC) based composite have been performed. In the first stage, the PLA/MoS<jats:sub>2</jats:sub>-SiC composite was fabricated from the different types of filaments of 1.75 ± 0.10 mm size by taking MoS<jats:sub>2</jats:sub>-SiC as reinforcement at various extrusion temperatures (150°C–160°C) and screw rotational speed (3–7 r/min) of the extruder setup. The Taguchi L9 orthogonal array was used to design the experiments for 3D printing by varying the filament type, range of nozzle temperature (200°C–210°C), and infill density (40%–90%). The pin-on-disk (POD) setup was used for measuring specific wear rate (SWR) and showed the lowest value of 0.00141 g/N-m when composites were 3D printed by taking filaments manufactured at the parametric combination of 160°C extruder temperature and 7 r/min rotational speed, while 3D printed at 210°C nozzle temperature and 40% infill density. Contact angle (CA) values indicated that the reinforcement of MoS<jats:sub>2</jats:sub> and SiC in PLA resulted in hydrophilic surface formation due to morphology and increased roughness (including mean roughness (Sa), mean root square of the Z data (Sq), and the highest peak (Sz)). The significantly increased surface free energy (SFE) of MoS<jats:sub>2</jats:sub>-SiC-reinforced PLA composite compared to pure PLA was reported which makes the prepared composite a promising candidate to be used for biocompatible implants with high wear resistance.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of artificial neural networks as a tool for the prediction of electrical conductivity in polymer composites 应用人工神经网络作为预测聚合物复合材料导电性的工具
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-01 DOI: 10.1177/08927057241243361
Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo
{"title":"Application of artificial neural networks as a tool for the prediction of electrical conductivity in polymer composites","authors":"Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo","doi":"10.1177/08927057241243361","DOIUrl":"https://doi.org/10.1177/08927057241243361","url":null,"abstract":"In this work, conductive polymeric composites (CPCs) of renewable source high-density polyethylene (HDPE) (BioPe) with various carbon black (CB) concentrations were developed. To corroborate the electrical conductivity prediction techniques, an artificial neural network (ANN) was modeled and trained to predict electrical conductivity using processing parameters, filler information, and polymeric matrix. Thus, the obtained neural network and the proposed methodology could serve as experimental support for the development of new materials based on parametric variation and consequent prediction of electrical conductivity. Therefore, the use of artificial neural networks from processing data and filler concentration proved to be an efficient technique for predicting the electrical conductivity of CPCs using conductive carbon black as conductive filler.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model 利用遗传算法优化混合学习模型预测 3D 打印部件的表面粗糙度
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-04-01 DOI: 10.1177/08927057241243364
Gazi Akgun, Osman Ulkir
{"title":"Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model","authors":"Gazi Akgun, Osman Ulkir","doi":"10.1177/08927057241243364","DOIUrl":"https://doi.org/10.1177/08927057241243364","url":null,"abstract":"The final product of additive manufacturing (AM) or 3D printing critically depends on the surface quality. An experimental study on the 3D printed intake manifold flange using acrylonitrile butadiene styrene (ABS) material was executed by varying the four process parameters. A fused deposition modeling (FDM) based 3D printer was used to fabricate the flanges. The association between the parameters and the surface roughness of printed ABS flanges was investigated. A feed forward neural network (FFNN) model trained on particle swarm optimization (PSO) optimized with a genetic algorithm (GA) was used to estimate the surface roughness. A Box-Behnken design (BBD) with printing parameters at three levels was used, and 25 parts were fabricated. The suggested model demonstrated a coefficient of determination (R<jats:sup>2</jats:sup>) of 0.9865 on test values, mean of root-mean-square-error (RMSE) of 0.1231 after 500 times training for generalization. And also mean of overfitting factor is 0.7110. This means that the suggested system could generalize. Comparing the results from the suggested model and ANN, the suggested hybrid model outperformed ANN in predicting the surface roughness values with no overfitting. This suggests that GA optimized PSO based FFNN may be a more suitable method for estimating product quality in terms of surface roughness.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(lactic acid)/poly(ε-caprolactone) blends: Separate effects of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics 聚(乳酸)/聚(ε-己内酯)共混物:纳米碳酸钙和甲基丙烯酸缩水甘油酯对界面特性的不同影响
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-29 DOI: 10.1177/08927057241243363
Mohammadmahdi Negaresh, A. Javadi, H. Garmabi
{"title":"Poly(lactic acid)/poly(ε-caprolactone) blends: Separate effects of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics","authors":"Mohammadmahdi Negaresh, A. Javadi, H. Garmabi","doi":"10.1177/08927057241243363","DOIUrl":"https://doi.org/10.1177/08927057241243363","url":null,"abstract":"To expand the potential applications of polylactic acid (PLA), it is essential to incorporate a highly flexible polymer into the blend. Polycaprolactone (PCL) is an ideal choice due to its ductility and biodegradability. However, blending PLA with PCL resulted in weak mechanical properties. To address this issue, glycidyl methacrylate (GMA) and nano calcium carbonate (NCC) were introduced to enhance the adhesion at the interface between PLA and PCL. Scanning Electron Microscope (SEM) images provided clear visual evidence of the impact of GMA and NCC on the morphology of the blend. Both components were effective in reducing the size of the dispersed PCL phase, shrinking it to approximately half the size of the original blend. Spectroscopic analysis revealed that GMA caused a reaction between its epoxy group and the hydroxyl and carboxyl groups of PLA and PCL. This reaction led to the formation of strong peaks in the 6.5 to 7.5 range in 1H NMR, as well as peaks at 76 and 139 ppm in 13C NMR. These findings were further corroborated by FT-IR, which demonstrated that NCC, despite its surface coating, did not create any new bonds. Rheological studies further demonstrated the positive effects of GMA and NCC. Both the storage modulus (G′) and complex viscosity (η*) of the blends increased, showing improved post-processing performance. Investigation into the shear-thinning behavior of the uncompatibilized blends revealed that NCC caused a significant decrease in complex viscosity at higher frequencies, indicating the disruption of the nanoparticle network. The power-law slope was measured to be 0.62. In contrast, the blend containing the compatibilizer demonstrated a moderate decrease in viscosity, with a power-law slope of 0.36. To analyze the behavior of the PLA/PCL blends in the presence of compatibilizers and nanoparticles at intermediate frequencies, the Palirene model was utilized. The superior integrity of the compatibilized blend was effectively demonstrated by the model, which showed enhanced stress transfer and phase relaxation.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the role of poly(methyl methacrylate) (PMMA) molecular weight in poly(vinylidene fluoride) (PVDF)/PMMA/Expanded graphite (ExGr) blend nanocomposites: Insights into morphology, thermal behavior, electrical conductivity, and wetting property 揭示聚偏二氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)/膨胀石墨(ExGr)共混纳米复合材料中聚甲基丙烯酸甲酯(PMMA)分子量的作用:对形态、热行为、导电性和润湿性能的见解
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-27 DOI: 10.1177/08927057241238203
Nikhitha Augustin, Pranesh Muraliharan, Aleena Sabu, Kanya Koothanatham Senthilkumar, Pratheep Kumar Annamalai, Ramanujam Brahmadesam Thoopul Srinivasa Raghava
{"title":"Unravelling the role of poly(methyl methacrylate) (PMMA) molecular weight in poly(vinylidene fluoride) (PVDF)/PMMA/Expanded graphite (ExGr) blend nanocomposites: Insights into morphology, thermal behavior, electrical conductivity, and wetting property","authors":"Nikhitha Augustin, Pranesh Muraliharan, Aleena Sabu, Kanya Koothanatham Senthilkumar, Pratheep Kumar Annamalai, Ramanujam Brahmadesam Thoopul Srinivasa Raghava","doi":"10.1177/08927057241238203","DOIUrl":"https://doi.org/10.1177/08927057241238203","url":null,"abstract":"Poly(vinylidene fluoride) (PVDF) based conducting polymer composites with carbon nanomaterials can be used for mechanical energy harvesting through piezoelectric or triboelectric effect. This study aims to investigate the influence of PMMA molecular weight on the electrical, thermal, and wetting properties of PVDF/40 wt.% PMMA blend nanocomposites reinforced with expanded graphite (ExGr). The blend nanocomposites with 40 wt.% PMMA have been prepared by solution blending method by using two different molecular weights of PMMA whose melt flow indices are 2 g/10 min and 2.3 g/10 min. The coexistence of the electroactive gamma and non-polar alpha phases of PVDF in the blend nanocomposites has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analyses. While overall crystallinity (%) of low molecular weight PMMA employed blend nanocomposites is lower than that of high molecular weight PMMA blended nanocomposites, the electroactive gamma phase has been found to increase in the former blend nanocomposites. The dispersion of graphite nanosheets has been observed to be better in high molecular weight PMMA employed blend nanocomposites which results in higher electrical conductivity. Impedance analysis of PVDF-40 wt.% PMMA-2 wt.% ExGr blend nanocomposite with high molecular weight PMMA results in enhanced interjunction capacitance (74.5 pF) in comparison to low molecular weight PMMA mixed blend nanocomposites (68 pF). Water contact angle (WCA) increases with molecular weight of PMMA and ExGr loading level. Thermogravimetric analysis has shown that the char content (above 500°C) is slightly higher for the blend with low molecular weight PMMA than with high molecular weight PMMA.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties and discrete element simulation of KH-560 modified polystyrene concrete KH-560 改性聚苯乙烯混凝土的力学性能和离散元模拟
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-26 DOI: 10.1177/08927057241240724
Yong Feng, Xiaoyang Li, Weijian Wang, Lijuan Li, Chen Zhao
{"title":"Mechanical properties and discrete element simulation of KH-560 modified polystyrene concrete","authors":"Yong Feng, Xiaoyang Li, Weijian Wang, Lijuan Li, Chen Zhao","doi":"10.1177/08927057241240724","DOIUrl":"https://doi.org/10.1177/08927057241240724","url":null,"abstract":"Polystyrene foam (EPS) concrete is a composite concrete material commonly used in construction, which has excellent thermal insulation and thermal insulation properties, but also has defects of weak bonding interface.KH-560 can significantly improve the characteristics of EPS particles and concrete matrix, which have different physical and chemical properties and are difficult to combine. In this study, the effects of different levels of KH-560 on the enhanced mechanical properties of EPS concrete were studied from the aspects of macroscopic mechanical properties, microstructure characteristics, chemical composition and discrete element simulation, and the mechanism of action was discussed. The results of mechanical experiments show that the compressive strength and flexural strength of EPS concrete mixed with KH-560 are higher than those of ordinary EPS concrete, and its mechanical properties gradually increase with the increase of KH-560 content. XRD, FT-IR and SEM observations showed that more C-S-H gels would be produced under the action of KH-560, which made the structure of the weak interface transition zone of EPS concrete more compact. The results of discrete element simulation show that the peak strength of EPS concrete increases with the increase of friction coefficient, but has little effect on its elastic modulus.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and statistical study on the effect of process parameters on the quality of continuous fiber composites made via additive manufacturing 工艺参数对增材制造连续纤维复合材料质量影响的实验和统计研究
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-22 DOI: 10.1177/08927057241241504
Femi A Ibitoye, Donald W Radford
{"title":"Experimental and statistical study on the effect of process parameters on the quality of continuous fiber composites made via additive manufacturing","authors":"Femi A Ibitoye, Donald W Radford","doi":"10.1177/08927057241241504","DOIUrl":"https://doi.org/10.1177/08927057241241504","url":null,"abstract":"Ongoing research in additive manufacturing towards structural and industrial application has led to the use of commingled roving as a manufacturing feedstock for printing high fiber volume fraction composites. The prospects of using this technology for high performance applications necessitates the need for a comprehensive experimental investigation into the effects of processing parameters on the quality of an additively manufactured composite printed from commingled roving feedstock. In this work, transverse flexure and void fraction matrix pyrolysis testing are both performed to evaluate composite quality. The transverse flexure test is a testing approach that evaluates the quality of the interfacial fiber-matrix bond while the void fraction test estimates the void content in the printed composite. A full observational study consisting of 27 different test combinations is done to investigate the effects of three different process parameters namely, temperature, pressure, and print speed across three different levels. Composite samples were made from commingled roving of E-glass and amorphous PET using an in-house built continuous fiber composite digital manufacturing system. Least squares regression analysis is performed to study the main, interaction and quadratic effects of process parameters. A statistical regression model having an R<jats:sup>2</jats:sup> adjusted value of 80.1% is generated from the transverse flexure study, which is used to explain main and interaction effects and also predict performance. Response surface plots are also generated and are used to optimize process parameters which can subsequently be of help in scaling up composite manufacturing. Results show that all three process parameters are highly statistically significant at the 0.01 level of significance. Pressure * Temperature and Pressure * Printspeed are significant interaction terms. Pressure plays a weightier role when print speed is increased or temperature is decreased as it closes more voids that would ordinarily have been introduced because of drop in polymer melt viscosity. Micrographic analysis is also performed.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing effects of damping materials on automotive bumper beam assembly under different velocity conditions 分析不同速度条件下阻尼材料对汽车保险杠横梁总成的影响
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-21 DOI: 10.1177/08927057241240720
Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain
{"title":"Analyzing effects of damping materials on automotive bumper beam assembly under different velocity conditions","authors":"Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain","doi":"10.1177/08927057241240720","DOIUrl":"https://doi.org/10.1177/08927057241240720","url":null,"abstract":"Automotive bumper beams play a very crucial role in absorbing impact energy during crash collisions and reducing damage from the front or rear ends of the vehicle during low or high-velocity impact. This paper discusses the impact of different energy-absorbing materials introduced between the fascia and the metallic beam. A novel recipe, with combinations ranging from 0% to 50% and 20% to 80% of Polypropylene (PP) with Ethylene vinyl acetate (EVA) and Polypropylene (PP) with Ethylene propylene diene monomer (EPDM), was prepared by weight and comparative study based on their impact strengths was done both experimentally and numerically. The mechanical properties of the polymer blends have been determined under tensile, compressive, and impact testing. Results obtained from numerical simulation analysis lie in reasonable agreement with the experimental findings. The tensile and compression test results show that polymer blend PP/EPDM-50/50 is the best selection as an energy absorber due to its ductility and toughness properties which is evident from experimental testing. The introduction of this blend in front of the metallic strip (bumper beam) has significantly supported the improvement in the energy-absorbing capacity and impact strength.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties and wear performance of denture base polymethyl methacrylate reinforced with nano Al2O3 用纳米 Al2O3 增强的义齿基底聚甲基丙烯酸甲酯的机械性能和耐磨性能
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-21 DOI: 10.1177/08927057241241500
Ramy A Fouad, Amal AA Ibrahim, Mohamed M El-Sayed Seleman, Sabbah Ataya, Mohamed Ibrahim AA Habba
{"title":"Mechanical properties and wear performance of denture base polymethyl methacrylate reinforced with nano Al2O3","authors":"Ramy A Fouad, Amal AA Ibrahim, Mohamed M El-Sayed Seleman, Sabbah Ataya, Mohamed Ibrahim AA Habba","doi":"10.1177/08927057241241500","DOIUrl":"https://doi.org/10.1177/08927057241241500","url":null,"abstract":"Polymethyl methacrylate (PMMA) has been widely used as a material in dentistry. The deterioration of pure PMMA denture teeth is a significant issue that can alter the vertical dimensions of dentures. This study investigates the effect of aluminum oxide (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) nano-ceramic addition as reinforcements into the heat-cure acrylic resin denture teeth. The PMMA was reinforced with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> concentrations of 1, 3, 5, and 10 wt.%. The PMMA without ceramic addition is produced for comparison purposes. The color change, densification, microhardness, and compressive properties of the produced PMMA resin and its composites were investigated to detect the effect of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nano ceramic addition on the physical and mechanical properties. Furthermore, the microstructure was also performed using scanning electron microscopy (SEM) analysis. A chewing simulator was utilized to conduct two-body wear testing, employing a human enamel antagonist. The wear behavior of the PMMA and their composites were assessed by measuring the weight loss after submitting them to 37,500 cycles. The SEM microstructure analysis revealed sound specimens of PMMA reinforced with 0, 1, 3, and 5 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> without any porosity and micro defects using the applied production procedures. In contrast, the aggregated sites and propagation of cracks were detected for the PMMA/10 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> specimen. The densification and hardness properties of the produced PMMA composites improved with increasing the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> additions. The microhardness of PMMA/10 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> improved by around 233% compared to the PMMA matrix. The higher compressive properties were detected for the PMMA/5 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> composite specimen with ultimate compressive strength (UCS) of 54.75 MPa and yield strength (YS) of 45.6 MPa and improved than the PMMA matrix by around 98 % and 117 %, respectively. In addition, incorporating Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nano-ceramic particles into a PMMA matrix revealed a significant improvement in the wear resistance of the produced composites compared to the PMMA matrix.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption of chlorpyrifos in water using polyaniline/graphene oxide composites 使用聚苯胺/氧化石墨烯复合材料吸附水中的毒死蜱
IF 3.3 4区 材料科学
Journal of Thermoplastic Composite Materials Pub Date : 2024-03-21 DOI: 10.1177/08927057241240723
Sachidananda Mohapatra, Rajat Kumar Sahoo, Rajesh Kumar Nayak, Bishnu Prasad Panda, Mayureshwar Sunil Konarde, Aswathy N R, Aswini Kumar Mohapatra
{"title":"Adsorption of chlorpyrifos in water using polyaniline/graphene oxide composites","authors":"Sachidananda Mohapatra, Rajat Kumar Sahoo, Rajesh Kumar Nayak, Bishnu Prasad Panda, Mayureshwar Sunil Konarde, Aswathy N R, Aswini Kumar Mohapatra","doi":"10.1177/08927057241240723","DOIUrl":"https://doi.org/10.1177/08927057241240723","url":null,"abstract":"Graphene oxide and polyaniline have some unique properties and are considered as new generation materials for various applications. One major application of these materials is the adsorption of pollutants. In this study, Graphene oxide was synthesized with different levels of oxidation by using the modified Hummers method. Polyaniline/graphene oxide composite was synthesized by in situ polymerization with GO loading at 10% and 50% and further the composite is casted inside a disposable syringe by using N-methyl-2-pyrrolidone (NMP) as a dispersing agent. An adsorption experiment was carried out for water containing pesticide chlorpyrifos. The produced materials were characterized by FTIR spectroscopy &amp; and XRD. Morphology was studied by SEM images. The FTIR spectra shows the formation of functional groups like -OH, -COOH on graphene, which may increase the hydrophilicity and adsorption properties. FTIR spectra of the composite portrayed the formation of bonds between polyaniline and graphene oxide. XRD peaks were obtained corresponding to crystals of polyaniline and graphite sheets. The adsorption efficiency was determined by analysis of water samples before and after filtration by using GC-MS. The composite produced with 50% amount of GO showed optimum results for the removal of chlorpyrifos. However, the composite with 10% GO loading is showing very low efficiency for the removal of chlorpyrifos. The PANI/GO composite is a possible candidate for the treatment of river water polluted by agricultural pollutants.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信