Annals of Warsaw University of Life Sciences, Land Reclamation最新文献

筛选
英文 中文
Weekly urban water demand forecasting using a hybrid wavelet–bootstrap–artificial neural network approach 基于小波自举-人工神经网络混合方法的城市周需水量预测
Annals of Warsaw University of Life Sciences, Land Reclamation Pub Date : 2014-10-01 DOI: 10.2478/sggw-2014-0016
K. Adamowski, J. Adamowski, O. Seidou, B. Ozga-Zieliński
{"title":"Weekly urban water demand forecasting using a hybrid wavelet–bootstrap–artificial neural network approach","authors":"K. Adamowski, J. Adamowski, O. Seidou, B. Ozga-Zieliński","doi":"10.2478/sggw-2014-0016","DOIUrl":"https://doi.org/10.2478/sggw-2014-0016","url":null,"abstract":"Abstract Weekly urban water demand forecasting using a hybrid wavelet-bootstrap-artificial neural network approach. This study developed a hybrid wavelet-bootstrap-artificial neural network (WBANN) model for weekly (one week) urban water demand forecasting in situations with limited data availability. The proposed WBANN method is aimed at improving the accuracy and reliability of water demand forecasting. Daily maximum temperature, total precipitation and water demand data for almost three years were used in this study. It was concluded that the hybrid WBANN model was more accurate compared to the ANN, BANN and WANN methods, and can be applied successfully for operational water demand forecasting. The WBANN model simulated peak water demand very effectively. The better performance of the WBANN model indicated that wavelet analysis significantly improved the model’s performance, whereas the bootstrap technique improved the reliability of forecasts by producing ensemble forecasts. The WBANN model was also found to be effective in assessing the uncertainty associated with water demand forecasts in terms of confidence bands; this can be helpful in operational water demand forecasting. Streszczenie Tygodniowa prognoza zapotrzebowania na wodę w obszarach miejskich określana metodą hybrydową z wykorzystaniem transformaty falkowej - bootstrapu - sztucznej sieci neuronowej. W artykule zaproponowano hybrydowy model (WBANN) wykorzystujący transformatę falkową, bootstrap i sztuczną sieć neuronową do opracowania tygodniowej prognozy zapotrzebowania na wodę w obszarach miejskich przy ograniczonej dostępności danych. Proponowany model WBANN ma na celu poprawę trafności i niezawodności prognozowania zaopatrzenia w wodę. W analizach wykorzystane zostały dobowe wartości maksymalnej temperatury, sumy opadów i zapotrzebowania na wodę z 3-letniego okresu obserwacji. Stwierdzono, że hybrydowy model WBANN jest dokładniejszy od modeli ANN, BANN i WANN i z powodzeniem może być użyty do operacyjnego prognozowania zapotrzebowania na wodę. Model WBANN bardzo skutecznie prognozuje szczytowy popyt na wodę. Dobre wyniki otrzymane z modelu WBANN świadczą o tym, że zastosowana analiza falkowa znacząco poprawiła dokładność modelu, a metoda bootstrapu polepszyła niezawodność (wiarygodność) modelu poprzez prognozowanie ensemblowe. Ocena niepewności z zastosowaniem przedziału ufności wykazała dużą trafność prognoz generowanych przez model WBANN oraz jego przydatność w operacyjnym wykorzystaniu","PeriodicalId":169511,"journal":{"name":"Annals of Warsaw University of Life Sciences, Land Reclamation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114889541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Particulate matter in indoor spaces: known facts and the knowledge gaps* 室内空间中的颗粒物:已知事实和知识差距*
Annals of Warsaw University of Life Sciences, Land Reclamation Pub Date : 1900-01-01 DOI: 10.1515/sggw-2015-0013
P. Rogula-Kopiec, J. Pastuszka, W. Rogula-Kozłowska, G. Majewski
{"title":"Particulate matter in indoor spaces: known facts and the knowledge gaps*","authors":"P. Rogula-Kopiec, J. Pastuszka, W. Rogula-Kozłowska, G. Majewski","doi":"10.1515/sggw-2015-0013","DOIUrl":"https://doi.org/10.1515/sggw-2015-0013","url":null,"abstract":"Abstract: Particulate matter in indoor spaces: known facts and the knowledge gaps. As people spend most of the time in closed spaces (flats, workplaces, schools etc.), the indoor air has been researched for many years all over the world. Particulate matter (PM) is one of the most often examined pollutants in the indoor and outdoor air. The following study presents the facts about PM in closed spaces and the most often taken actions. The least known aspects related to the indoor air pollution with PM are demonstrated. The indoor space of various service and office buildings/facilities (not related to production, i.e. offices, shops, beauty parlours, restaurant kitchens, restaurants, pubs etc.) seem to be an unrecognized area in the air pollution studies. Importantly, a great number of people work in such spaces all over the world and thus spend there a large part of their lives.","PeriodicalId":169511,"journal":{"name":"Annals of Warsaw University of Life Sciences, Land Reclamation","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128931157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信