Yating Yang , Yusheng Zhong , Cheng Chi , Xiacheng Lin , Xuemei Zhu , Xun Deng , Jianhong Liang , Yong Cheng
{"title":"The RNA N6-methyladenosine demethylase FTO regulates ATG5 to inhibit malignant progression of uveal melanoma","authors":"Yating Yang , Yusheng Zhong , Cheng Chi , Xiacheng Lin , Xuemei Zhu , Xun Deng , Jianhong Liang , Yong Cheng","doi":"10.1016/j.jprot.2024.105282","DOIUrl":"10.1016/j.jprot.2024.105282","url":null,"abstract":"<div><h3>Purpose</h3><p>This research aimed to identify the function of fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), and explore its possible mechanisms in uveal melanoma (UVM).</p></div><div><h3>Methods</h3><p>We performed quantitative real-time PCR (qPCR), Western blotting and gene correlation analysis with GEPIA2 to assess FTO expression and identify its potential targets in UVM. CCK-8, colony formation, cell cycle, cell apoptosis, wound healing and Transwell invasion assays were utilized to assess cell viability, cell cycle distribution, apoptosis, migration and invasion. Western blotting, qPCR and methylated RNA immunoprecipitation–qPCR (MeRIP–qPCR) were carried out to explore the underlying mechanism of FTO in 2 UVM cell lines.</p></div><div><h3>Results</h3><p>FTO, a key m6A demethylase, was found to be upregulated in human UVM tissues compared with normal choroid tissues. Knockdown of FTO in Mel270 and OMM2.3 cells significantly promoted proliferation and migration and suppressed apoptosis. Mechanistically, knockdown of FTO decreased the expression of ATG5, an autophagy-related gene, leading to attenuation of autophagosome formation, thereby inhibiting autophagy. Upon FTO knockdown, increased levels of methylated ATG5 and decreased ATG5 stability were detected. Furthermore, ATG5 dramatically alleviated FTO downregulation-induced tumor growth and metastasis.</p></div><div><h3>Conclusions</h3><p>Our research highlights the importance of the m6A demethylase FTO in UVM by demonstrating that it direct regulates ATG5-induced autophagy in an m6A-dependent manner. These findings suggest that FTO may serve as a potential therapeutic target for UVM.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874391924002148/pdfft?md5=c89c66871793b38320b1321f2c2c8248&pid=1-s2.0-S1874391924002148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the mysteries of chicken proteomics: Insights into follicle development and reproduction","authors":"Armughan Ahmed Wadood , Zhang Xiquan","doi":"10.1016/j.jprot.2024.105281","DOIUrl":"10.1016/j.jprot.2024.105281","url":null,"abstract":"<div><p>Chicken proteomics is a valuable method for comprehending the many mechanisms involved in follicle growth and reproduction in birds. This study offers a thorough summary of the latest progress in chicken proteomics research, specifically highlighting the knowledge obtained regarding follicle development and reproductive physiology. Proteomic studies have revealed essential proteins and pathways that play a role in follicle development, including those that control oocyte size, maturation, and ovulation. Proteomic investigations have provided insight into the molecular pathways that govern reproductive processes. By utilizing advanced proteomic technologies, including mass spectrometry and protein microarray analysis, we have been able to identify and measure many proteins in chicken follicles at their different developmental stages. The utilization of proteomic methods has enabled the identification of previously unknown biomarkers for reproductive efficiency that expedited the creation of innovative diagnostic instruments for monitoring reproductive health in chicken. Chicken proteomics not only offers insights into follicle growth and reproduction but also uncovers the effects of environmental influences on reproductive function. This provides new opportunities for exploring the molecular pathways that cause these effects. The integration of current data with upcoming proteomic technologies offers the potential for innovative strategies to enhance chicken reproduction.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haifei Hao , Baohui Xie , Dadi Zhao , Jiaqi Kang , Xiangning Jiang , Ying Gai
{"title":"Proteomic insights into adventitious root formation in Larix kaempferi","authors":"Haifei Hao , Baohui Xie , Dadi Zhao , Jiaqi Kang , Xiangning Jiang , Ying Gai","doi":"10.1016/j.jprot.2024.105288","DOIUrl":"10.1016/j.jprot.2024.105288","url":null,"abstract":"<div><p>The adventitious root formaton (ARF) in excised plant parts is essential for the survival of isolated plant fragments. In this study, we explored the complex mechanisms of ARF in <em>Larix kaempferi</em> by conducting a comprehensive proteomic analysis across three distinct stages: the induction of adventitious root primordia (C1, 0–25 d), the formation of adventitious root primordia (C2, 25–35 d), and the elongation of adventitious roots (C3, 35–45 d). We identified 1976 proteins, with 263 and 156 proteins exhibiting increased abundance in the C2/C1 and C3/C2 transitions, respectively. In contrast, a decrease in the abundance of 106 and 132 proteins suggests a significant demand for metabolic processes during the C2/C1 phase. The abundance of IAA-amino acid hydrolase and S-adenosylmethionine synthase were increased in the C2/C1 phase, underscoring the role of auxin in adventitious root induction. The decrease in abundance of photosynthesis-related proteins during the C2/C1 phase highlights the significance of initial light conditions in adventitious root induction. Moreover, variation in cell wall synthesis and metabolic proteins in the C2/C1 and C3/C2 stages suggests that cell wall metabolism is integral to adventitious root regeneration. Gene Ontology enrichment analysis revealed pathways related to protein modification enzymes, including deubiquitinases and kinases, which are crucial for modulating protein modifications to promote ARF. Furthermore, the increased abundance of antioxidant enzymes, such as peroxidases and glutathione peroxidases, indicates a potential approach for enhancing ARF by supplementing the culture medium with antioxidants. Our study provides insights into metabolic changes during ARF in <em>L. kaempferi</em>, offering strategies to enhance adventitious root regeneration. These findings have the potential to refine plant propagation techniques and expedite breeding processes.</p></div><div><h3>Signficance</h3><p>The main challenge in the asexual reproduction technology of <em>Larix kaempferi</em> lies in adventitious root formation (ARF). While numerous studies have concentrated on the efficiency of ARF, proteomic data are currently scarce. In this study, we collected samples from three stages of ARF in <em>L. kaempferi</em> and subsequently performed proteomic analysis. The data generated not only reveal changes in protein abundance but also elucidate key metabolic processes involved in ARF. These insights offer a novel perspective on addressing the challenge of adventurous root regeneration.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongfeng Pan , Zeyi Zhao , Yuanchang Zhu , Yihuang Gao , Haoyang Ruan , Ying Huang , Pan Chi , Shenghui Huang
{"title":"Combining proteomics and Phosphoproteomics to investigate radiation-induced rectal fibrosis in rats and the effects of pSTAT3 inhibitor S3I-201 on human intestinal fibroblasts","authors":"Hongfeng Pan , Zeyi Zhao , Yuanchang Zhu , Yihuang Gao , Haoyang Ruan , Ying Huang , Pan Chi , Shenghui Huang","doi":"10.1016/j.jprot.2024.105287","DOIUrl":"10.1016/j.jprot.2024.105287","url":null,"abstract":"<div><h3>Objective</h3><p>To investigate the regulatory mechanisms of radiation-induced rectal fibrosis (RIRF) and assess the therapeutic potential of S3I-201.</p></div><div><h3>Methods</h3><p>Sprague-Dawley rats were divided into control and radiation groups, with the latter exposed to 20 Gray pelvic X-rays. After 10 weeks, rectal tissues were analyzed using tandem mass tag (TMT) proteomics and phosphoproteomics. Pathway enrichment was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, with secondary annotation using Cluego. Representative proteins and their phosphorylated counterparts were validated through immunoblotting in another cohort. STAT3 levels in rectal tissues from irradiated and non-irradiated colorectal cancer patients were examined, and the effects of S3I-201 on human rectal fibroblasts were evaluated.</p></div><div><h3>Results</h3><p>The radiation group showed significant inflammatory responses and collagen deposition in the rat rectal walls. Enrichment analysis revealed that radiation-induced proteins and phosphoproteins were primarily involved in extracellular matrix-receptor interaction and the MAPK signaling pathway. Immunoblotting indicated increased expression of p-CAMKII, p-MRACKS, p-Cfl1, p-Myl9, and p-STAT3 in the radiation group compared to the control, while p-AKT1 expression decreased. Elevated phosphorylation of STAT3 was observed in submucosal fibroblasts of the post-radiation human rectum. S3I-201 specifically inhibited STAT3 phosphorylation and suppressed activation of human rectal fibroblasts, also inhibiting the pro-fibrotic effects of the classical TGF-β/Smad/CTGF pathway.</p></div><div><h3>Conclusion</h3><p>By integrating phosphoproteomics and proteomics, this study elucidated the protein regulatory network of RIRF and identified the potential therapeutic targets, including phosphoproteins such as STAT3 in managing RIRF.</p></div><div><h3>Significance</h3><p>In our research, we employed TMT labeling alongside LC-MS/MS techniques to comprehensively explore the proteomic and phosphoproteomic landscapes in rat models of radiation-induced intestinal fibrosis (RIRF). Our analysis revealed the function and pathways of proteins and phosphorylated proteins triggered by radiation, as well as those with protective roles. We mapped a network of interactions among these proteins and validated key protein expression levels using quantitative methods. Furthermore, we investigated STAT3 as a potential therapeutic target, assessing the efficacy of the inhibitor S3I-201 in laboratory settings, and highlighting its potential for RIRF treatment. Overall, our findings provide groundbreaking insights into the mechanisms underlying RIRF, paving the way for the development of future antifibrotic therapies.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinjiang Wei , Kela Li , Liye Su , Tuan Cen , Suren R. Sooranna , Xinshou Pan , Zhaohe Huang , Yan Liu
{"title":"Plasma proteomics implicate glutamic oxaloacetic transaminases as potential markers for acute myocardial infarction","authors":"Qinjiang Wei , Kela Li , Liye Su , Tuan Cen , Suren R. Sooranna , Xinshou Pan , Zhaohe Huang , Yan Liu","doi":"10.1016/j.jprot.2024.105286","DOIUrl":"10.1016/j.jprot.2024.105286","url":null,"abstract":"<div><h3>Aim</h3><p>To provide a novel perspective on the pathogenesis of acute myocardial infarction (AMI) patients with respect to glutamic oxaloacetic transaminase (GOT).</p></div><div><h3>Methods</h3><p>The plasma proteome of 20 patients with AMI were matched for age and sex and compared with 10 healthy individuals. We analyzed the mass spectrum data and compared the signal intensity of the corresponding peptides which related to their corresponding proteins. A sample-specific protein database was constructed and a quality control analysis was conducted to screen out the key regulatory proteins under specific experimental conditions. The data from 37 new AMI patients and 13 healthy adults were subjected to parallel reaction monitoring (PRM) to verify the target proteins found. Finally, the survival status of the key genes (> 1.5-fold) in the PPI were analyzed.</p></div><div><h3>Results</h3><p>2589 and 2162 proteins were identified and quantified, respectively, and 143 differentially expressed proteins (DEPs) (≥1.5-fold) were found between the AMI and control groups. Of these 90 and 53 were significantly up-regulated and down-regulated, respectively. Gene ontology, KEGG enrichment, protein domain and cluster analysis as well as PPI networks of the DEPs revealed a central role of acute inflammatory response processes in patients with AMI. A cluster of proteins were found to be related to cysteine, methionine, arginine, proline, phenylalanine and propanoate metabolism as well as the cAMP signaling pathway. PPI network analysis showed CHI3L1, COPB2, GOT2, MB, CYCS, GOT1, CKM, SAA1 and PRKCD and RPS3 were in key positions, but only MB, CKM, GOT1, PRKCD, CYCS and GOT2 were found in a cluster. PRM verified the high levels of MB, CKM, GOT1 and GOT2 in 37 AMI patients but there was no statistical difference in the survival status for patients with either high or low expression levels of these proteins.</p></div><div><h3>Conclusions</h3><p>Our findings showed that acute inflammatory response processes play a central role in patients with AMI. Cysteine and methionine metabolism was also activated, in which GOT1 and GOT2 were key proteins. These pathways might be potential targets for diagnosis and novel therapies to improve the poor outcomes observed in patients with heart failure.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874391924002185/pdfft?md5=e1c3cf6107381ccc30e14b6f69c777ba&pid=1-s2.0-S1874391924002185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using long columns to quantify over 9200 unique protein groups from brain tissue in a single injection on an Orbitrap Exploris 480 mass spectrometer","authors":"Xianyin Lai, Guihong Qi","doi":"10.1016/j.jprot.2024.105285","DOIUrl":"10.1016/j.jprot.2024.105285","url":null,"abstract":"<div><p>The most exciting advancement in LC-MS/MS-based bottom-up proteomics has centered around enhancing mass spectrometers. Among these, the latest and most advanced mass spectrometer for bottom-up proteomics is the Orbitrap Astral that has the highest scan rate to accelerate throughput and the highest sensitivity to handle a very small amount of peptide samples and to achieve deeper proteomics. However, its affordability remains a challenge for most laboratories. While significant strides have been made in improving mass spectrometry, advancing liquid chromatography (LC) to achieve deeper proteomics has not achieved significant successes since the innovation of Multidimensional Protein Identification Technology (MudPIT) in 2001. To achieve deeper proteomics in a less labor-intensive and more reproducible approach while using a more cost-effective mass spectrometer, such as the Orbitrap Exploris 480, we evaluated trap columns as long as 40 cm and analytical column as long as 600 cm besides sample loading amount, gradient time, and analytical column particle size to enable a fractionation-free method for a single injection to obtain deeper proteomics. The length of trap and analytic columns is the key factor. Using a 30 cm trap column and 250 cm analytical column with other optimized LC conditions, we quantified over 9200 unique protein groups from brain tissue in a single injection using a 24-h gradient on an Orbitrap Exploris 480 mass spectrometer.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhibin Yuan , Yi Wang , Song Xu , Meng Zhang, Jianjun Tang
{"title":"Construction of a prognostic model for colon cancer by combining endoplasmic reticulum stress responsive genes","authors":"Zhibin Yuan , Yi Wang , Song Xu , Meng Zhang, Jianjun Tang","doi":"10.1016/j.jprot.2024.105284","DOIUrl":"10.1016/j.jprot.2024.105284","url":null,"abstract":"<div><p>Endoplasmic reticulum stress may affect the occurrence and development of cancer. However, its effect on the prognosis of colon cancer (CC) patients is not clear yet. Herein, based on TCGA database, we screened 15 endoplasmic reticulum stress responsive genes (ERSRGs) associated with the prognosis of CC patients by Cox regression. By LASSO and multivariate Cox regression analyses, a prognostic risk assessment model involving 12 genes (<em>DNAJB2</em>, <em>EIF4A1</em>, <em>YPEL4</em>, <em>COQ10A</em>, <em>IRX3</em>, <em>ASPHD1</em>, <em>NTRK2</em>, <em>TRIM39</em>, <em>XBP1</em>, <em>GRIN2B</em>, <em>LRRC59</em>, and <em>RORC</em>) was built. The survival curves indicated that patients in the low-risk group had good prognosis. ROC curves demonstrated a good performance of this 12-gene prognostic model, and the Riskscore could be considered as an independent prognostic factor. Patients in low-risk group benefit more from immune checkpoint inhibitor and immune checkpoint blockade (ICB) treatment. Besides, the enrichment analysis suggested a remarkable difference in Ca<sup>2+</sup> signaling in both groups. Finally, based on the cMAP database, we identified several potential drugs that could target high-risk groups, such as Dasatinib, GNF-2, Saracatinib, and WZ-1-84. To sum up, our research constructed an ERSRGs-characteristic prognostic model. The model is a promising biomarker for prediction of clinical outcomes and immune therapy response of CC patients.</p></div><div><h3>Significance</h3><p>Based on the transcriptomic data of colon cancer in the TCGA database, this study screens 12 endoplasmic reticulum stress-related genes (ERSRGs), including DNAJB2, EIF4A1, YPEL4, COQ10A, IRX3, ASPHD1, NTRK2, TRIM39, XBP1, asphD1, NTRK2. GRIN2B, LRRC59, and RORC, and a prognostic model was constructed. This model can be used as a predictor of prognosis and immunotherapy response in colon cancer patients. At the same time, model-based prediction of drugs can also be a potential option for colon cancer treatment in the future.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yidan Zhang , Yuan Zhao , Jian Zhang , Ya Gao , Xuan Gao , Shuyue Li , Cui Chang , Guofeng Yang
{"title":"Proteomics of plasma-derived extracellular vesicles reveals S100A8 as a novel biomarker for Alzheimer's disease: A preliminary study","authors":"Yidan Zhang , Yuan Zhao , Jian Zhang , Ya Gao , Xuan Gao , Shuyue Li , Cui Chang , Guofeng Yang","doi":"10.1016/j.jprot.2024.105279","DOIUrl":"10.1016/j.jprot.2024.105279","url":null,"abstract":"<div><p>Extracellular vesicles (EVs) act as mediators for intercellular transfer of Aβ and tau proteins, promoting the propagation of these pathological misfolded proteins throughout the brain in Alzheimer's disease (AD). Levels of blood exosomal Aβ<sub>42</sub>, total Tau (t-Tau) and phosphorylated Tau (p-Tau) had a high correlation with their concentrations in cerebrospinal fluid (CSF), demonstrating that exosomal biomarkers have equal contribution as those in CSF for the diagnosis of AD. We aimed to comprehensively characterize the proteome of plasma-derived EVs to identify differentially expressed proteins (DEPs) and pathways in AD. Tandem mass tag (TMT) labeled quantitative proteomics was applied to analyze plasma-derived EV proteins in 9 AD patients and 9 healthy controls. 335 proteins were quantified, and 12 DEPs were identified including seven upregulated proteins and five down-regulated proteins. Oligomerized Aβ<sub>1–42</sub> induced SH-SY5Y cell damage model was built to mimic the pathological changes of AD, and small interfering RNA (siRNA) against S100A8 was used to knock down S100A8 expression. Results displayed S100A8 was down regulated in plasma-derived EVs from AD patients, while enriched in EVs derived from Aβ<sub>1–42</sub>-induced SH-SY5Y cells. Furthermore, Aβ<sub>1–42</sub>-induced SH-SY5Y cells treated with S100A8 siRNA showed decreased Aβ levels in cell lysate and EVs, especially in EVs.</p></div><div><h3>Significance</h3><p>The investigation aimed to comprehensively characterize the proteome of plasma-derived EVs to identify DEPs and potential biomarker of AD. S100A8 was found down regulated in plasma-derived EVs from AD patients using TMT labeled quantitative proteomics. The diagnostic value of S100A8 was also confirmed using receiver operating characteristic curve (ROC) analysis. Furthermore, Aβ<sub>1–42</sub>-induced SH-SY5Y cells treated with S100A8 siRNA showed decreased Aβ levels in cell lysate and EVs, especially in EVs. The preliminary findings suggest that suppression of S100A8 expression inhibits Aβ aggregation both in cell lysate and EVs from Aβ<sub>1–42</sub>-induced SH-SY5Y cells, and S100A8 more likely regulates Aβ aggregation via EVs. Therefore, plasma-derived EV S100A8 might be a potential biomarker of AD. Manipulation of S100A8 expression may be a novel therapeutic strategy in the treatment of AD.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vahid Jamshidi , B. Fatemeh Nobakht , Hasan Bagheri , Pardis Saeedi , Mostafa Ghanei , Raheleh Halabian
{"title":"Metabolomics to investigate the effect of preconditioned mesenchymal stem cells with crocin on pulmonary epithelial cells exposed to 2-chloroethyl ethyl sulfide","authors":"Vahid Jamshidi , B. Fatemeh Nobakht , Hasan Bagheri , Pardis Saeedi , Mostafa Ghanei , Raheleh Halabian","doi":"10.1016/j.jprot.2024.105280","DOIUrl":"10.1016/j.jprot.2024.105280","url":null,"abstract":"<div><p>Metabolomics significantly impacts drug discovery and precise disease management. This study meticulously assesses the metabolite profiles of cells treated with Crocin, Dexamethasone, and mesenchymal stem cells (MSCs) under oxidative stress induced by 2-chloroethyl ethyl sulfide (CEES). Gas chromatography/mass spectrometry (GC/MS) analysis unequivocally identified substantial changes in 37 metabolites across the treated groups. Notably, pronounced alterations were observed in pathways associated with aminoacyl-tRNA biosynthesis and the metabolism of aspartate, serine, proline, and glutamate. These findings demonstrate the potent capacity of the analyzed treatments to effectively reduce inflammation, mitigate reactive oxygen species production, and enhance cell survival rates.</p></div><div><h3>Significance</h3><p></p><ul><li><span>•</span><span><p>Crocin, Dexamethasone, and the metabolites of the conditioned media of mesenchymal stem cells to decline the injury caused by CEES.</p></span></li><li><span>•</span><span><p>Metabolites can acquaint treatment groups in diminishing inflammation and ROS production and expanding the percentage of cell survival.</p></span></li><li><span>•</span><span><p>Aminoacyl-tRNA biosynthesis, nitrogen metabolism, glyoxylate and dicarboxylate metabolism, and propanoate metabolism were significant pathways involved among groups.</p></span></li></ul></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yufeng Fu , Zhongya Gu , Huan Cao , Chengchao Zuo , Yaqi Huang , Yu Song , Jinfeng Miao , Yongsheng Jiang , Furong Wang
{"title":"Proteomic characterization of the medial prefrontal cortex in chronic restraint stress mice","authors":"Yufeng Fu , Zhongya Gu , Huan Cao , Chengchao Zuo , Yaqi Huang , Yu Song , Jinfeng Miao , Yongsheng Jiang , Furong Wang","doi":"10.1016/j.jprot.2024.105278","DOIUrl":"10.1016/j.jprot.2024.105278","url":null,"abstract":"<div><p>Depression is a prominent contributor to global disability. A growing body of data suggests that depression is associated with the pathophysiology of the medial prefrontal cortex (mPFC), but the underlying mechanisms remain poorly understood. Mice were subjected to chronic restraint stress (CRS) for 3 weeks to create depression models during this investigation. Protein tandem mass tag (TMT) quantification and LC-MS/MS analysis were conducted to examine proteome patterns. Afterwards, to further explore the enrichment of differential proteins and the signaling pathways involved, we annotated these differentially expressed proteins. We confirmed that CRS mice developed depression-like and anxiety-like behaviors. Among the 8081 measured proteins, a total of 15 proteins were found to be differentially expressed. These proteins exhibited functional enrichment in a variety of biological functions, and among these pathways, alterations in synaptic function and autophagy are noteworthy. In addition, we identified a differentially expressed protein called Wnt2b and found that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway. Our findings showed depression-like behaviors in the CRS mouse model and molecular alterations in the mPFC, which may help explain the pathogenesis of depression and identify novel antidepressant medication targets.</p></div><div><h3>Significance</h3><p>Depression is a prevalent and frequent chronic mental illness and is now a significant contributor to global disability. In this study, we used chronic restraint stress to establish a mouse model of depression, and differentially expressed proteins in the medial prefrontal cortex of depressed model mice were detected by TMT proteomics. Our study verified the presence of altered synaptic function and excessive autophagy in the mPFC of CRS-induced mice from a proteomic perspective. Furthermore, we demonstrated that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway, which may be a key link in the pathogenesis of depression and may provide new insights for identifying new antidepressant drug targets.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874391924002100/pdfft?md5=f5b261afd53d7be5089f972a78239115&pid=1-s2.0-S1874391924002100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}