Journal of Plant Growth Regulation最新文献

筛选
英文 中文
A Tyrosine Kinase-Like Gene BdCTR1 Negatively Regulates Flowering Time in the Model Grass Plant Brachypodium distachyon 酪氨酸激酶样基因 BdCTR1 负向调控模式禾本科植物 Brachypodium distachyon 的开花时间
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-19 DOI: 10.1007/s00344-024-11418-4
Weiming Bai, Jingyu Li, Dongtian Zang, Fanting Sun, Yufei Niu, Pengyue Wang, Wenjia You, Nan Li, Peisen Su
{"title":"A Tyrosine Kinase-Like Gene BdCTR1 Negatively Regulates Flowering Time in the Model Grass Plant Brachypodium distachyon","authors":"Weiming Bai, Jingyu Li, Dongtian Zang, Fanting Sun, Yufei Niu, Pengyue Wang, Wenjia You, Nan Li, Peisen Su","doi":"10.1007/s00344-024-11418-4","DOIUrl":"https://doi.org/10.1007/s00344-024-11418-4","url":null,"abstract":"<p>Flowering time is critical for the regional adaptation, yield, and reproduction of crop plants. Tyrosine kinase-like (TKL) genes are protein kinases (PKs) that play important roles in various plant processes. However, the functions of only a few TKLs in controlling flowering time in plants have been characterized. As a genetic model system, <i>Brachypodium distachyon</i> has been widely used in the study of gramineous crop species. Here, we identified and characterized the function of the model plant <i>Brachypodium</i> (poaceae) tyrosine kinase-like kinase <i>BdCTR1</i> in controlling flowering time. <i>BdCTR1</i> mutation caused earlier flowering compared with wild-type (WT) plants. Transcriptomic analysis revealed 2261 differentially expressed genes (DEGs) related to the circadian rhythm, phytohormone signaling, and flavonoid biosynthesis pathways in <i>Bdctr1</i> mutants compared with the wild type (WT). Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) revealed that the expression levels of flowering-related genes, including <i>FT</i>, <i>PPD1</i>, <i>CO,</i> and <i>FUL</i>, and ET-related genes, including <i>ETR</i>, <i>MKK</i>, and <i>ERF</i>, were altered in <i>Bdctr1</i> mutants compared with those in WT plants. Thus, our results show that <i>BdCTR1</i> plays a role in controlling flowering time by regulating various signaling pathways and contribute to elucidating the molecular mechanisms of PKs in controlling plant flowering.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Fungal Community Structure Formed by Typical Halophytes in the Rhizosphere Soil Under the Synergistic Action of Different Saline and Alkaline Environments 不同盐碱环境协同作用下根瘤土壤中典型卤叶植物形成的特殊真菌群落结构
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-19 DOI: 10.1007/s00344-024-11422-8
Qian Zhou, Jilian Wang, Tian Zhang, Mingyuan Li
{"title":"Special Fungal Community Structure Formed by Typical Halophytes in the Rhizosphere Soil Under the Synergistic Action of Different Saline and Alkaline Environments","authors":"Qian Zhou, Jilian Wang, Tian Zhang, Mingyuan Li","doi":"10.1007/s00344-024-11422-8","DOIUrl":"https://doi.org/10.1007/s00344-024-11422-8","url":null,"abstract":"<p>To adapt to a habitat, halophytes growing at the same saline–alkali levels develop their unique rhizosphere microbial communities, whereas same plant species growing at different saline–alkali levels have different rhizosphere microbial communities. Therefore, understanding the rhizosphere microbial community structure of halophytes in different saline–alkali soils can help explore the microbial diversity and functional potential of important soil microorganisms. In this study, rhizosphere soils of three typical halophytes, namely, <i>Halocnemum strobilaceum</i>, <i>Phragmites communis</i>, and <i>Halostachys caspica</i>, growing at severe, heavy, and moderate saline–alkali soils, respectively, were collected from southern Xinjiang. The community structure and physicochemical properties of fungal species in the total nine rhizosphere soils were investigated. Furthermore, the differences in the fungal community structure, diversity, and ecological functions were analyzed in terms of the extent of saline–alkali level and host plant specificity. Rhizosphere soils in the nine habitats had different physicochemical properties. In terms of host plant type, rhizosphere fungal species diversity and richness were the highest in <i>P. communis</i>, followed by <i>H. caspica</i> and <i>H. strobilaceum</i>. The fungal community diversity and richness followed the pattern of moderate &gt; severe &gt; heavy in different soil salinity and alkali types. Although the three host plants had similar rhizosphere fungal community structures under moderate and heavy saline–alkali conditions, these varied significantly under extremely severe saline–alkali conditions. In total, 315 species were identified across all samples, and they were affiliated with 12 phyla, 37 classes, 69 orders, 138 families, and 244 genera. The number of jointly owned ASVs was 189. In the nine habitats, Ascomycota and Basidiomycota were the dominant phyla, while <i>Alternaria</i>, <i>Neocamarosporium</i>, <i>Filobasidium</i>, and <i>Acremonium</i> were the common dominant genera. A prediction of fungal community functions revealed pathotroph-saprotroph-symbiotroph and saprotrophs to be dominant. At the same saline–alkali level, the functional clustering distance of fungal communities was closer. Factors such as soil organic matter (SOM), available nitrogen (AN), electronic conductivity (EC), and pH contributed to the distribution of microbial communities. This study revealed both similarities and distinctions in the composition of fungal communities within the rhizosphere soils of the three typical halophytes thriving in various saline–alkali habitats. At moderate and heavy saline–alkali levels, the fungal community structures were markedly influenced by the severity of salinity and alkalinity. In extremely severe saline–alkali soils, the host plant type significantly affected the fungal community structure. Ultimately, these findings lay a theoretical foundation for the improvement of soil a","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialization of the Stems into Shoots, Stolons, and Rhizomes in Bermudagrass (Cynodon dactylon L.): Insights from Combined Metabolome and Transcriptome Analyses 百慕大草(Cynodon dactylon L.)的茎特化为芽、匍匐茎和根茎:代谢组和转录组联合分析的启示
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-18 DOI: 10.1007/s00344-024-11420-w
Ziyan Ma, Shuai Yuan, Jingbo Chen, Bing Zhang
{"title":"Specialization of the Stems into Shoots, Stolons, and Rhizomes in Bermudagrass (Cynodon dactylon L.): Insights from Combined Metabolome and Transcriptome Analyses","authors":"Ziyan Ma, Shuai Yuan, Jingbo Chen, Bing Zhang","doi":"10.1007/s00344-024-11420-w","DOIUrl":"https://doi.org/10.1007/s00344-024-11420-w","url":null,"abstract":"<p>As a perennial warm-season turfgrass species with great economic value, bermudagrass <i>(Cynodon dactylon</i> L.) simultaneously has three types of stems: shoot, stolon, and rhizome. However, molecular mechanisms underlying the specialization of the three types of stems remain poorly understood. In this study, the metabolome differences among the three types of stems were analyzed and compared through untargeted metabolomic profiling in combination with transcriptome-wide analyses of the genes participating in the metabolic pathways. A total of 949 metabolites were identified in the three stems, whereas 303, 473, and 330 metabolites were differentially accumulated between shoots and stolons, shoots and rhizomes, and stolons and rhizomes, respectively. Sugars and phenylpropanoids were two enriched categories of metabolites showing preferential accumulation in the three types of stems. Transcriptome and RT-qPCR analyses indicated that gene expression of key enzymes catalyzing the synthesis and transformation of sugars and phenylpropanoids, especially glucose-1-phosphate adenylyltransferase, starch synthase, and phenylalanine ammonia-lyase, were delicately regulated to maintain the sugar-starch and lignin-flavonoid homeostasis in the three stems. The results of this study not only expanded our understanding of metabolism regulation in bermudagrass, but also laid a foundation for molecular mechanism study of stem specialization in this glamorous plant species.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous Glutathione Enhances Salt Tolerance in Kenaf by Mediating Modulation of Oxidative Stress Response and DNA Methylation 外源谷胱甘肽通过调节氧化应激反应和 DNA 甲基化增强剑麻的耐盐性
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-09 DOI: 10.1007/s00344-024-11402-y
Shan Cao, Guowang Liang, Lixia Zhang, Jiao Pan, Ru Li, Peng Chen
{"title":"Exogenous Glutathione Enhances Salt Tolerance in Kenaf by Mediating Modulation of Oxidative Stress Response and DNA Methylation","authors":"Shan Cao, Guowang Liang, Lixia Zhang, Jiao Pan, Ru Li, Peng Chen","doi":"10.1007/s00344-024-11402-y","DOIUrl":"https://doi.org/10.1007/s00344-024-11402-y","url":null,"abstract":"<p>Kenaf (<i>Hibiscus cannabinus</i> L.) is an important fiber crop, which can be applied for the restoration of saline-alkali land. The objective of our study was to investigate the impacts of exogenous glutathione (GSH) on physiological and biochemical properties, ion balance, and DNA methylation of kenaf under salt stress. We used Hoagland nutrient solution containing 200 mM NaCl to simulate salt stress, and found the growth of kenaf seedlings was substantially hindered. 100 μM GSH pretreatment effectively increased the plant height, stem diameter, main root length, and fresh weight under salt stress, as well as reduced the uptake of Na<sup>+</sup> and Cl<sup>−</sup> and promoted the uptake of K<sup>+</sup>. Besides, exogenous GSH pretreatment protected kenaf plants from salt-induced adversities by reducing the ROS-induced oxidative damage, enhancing the contents of chlorophyll, proline, and soluble sugar. Salinity reduced the total DNA methylation level in kenaf genome, triggering higher mRNA expressions of <i>HcGLP3</i>, <i>HcDOF1.4</i>, <i>HcULP3</i>, <i>HcVHA</i>, <i>HcPP2C39</i>, and <i>HcSRF6</i>. However, GSH addition enhanced the total DNA methylation level. We further utilized virus-induced genes silencing technique to confirm that <i>HcGLP3</i> played a positive role in the response of kenaf to salinity. Taken together, exogenous GSH could enhance salt tolerance in kenaf by mediating modulation of oxidative stress response and DNA methylation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Arbuscular Mycorrhizal Fungi in Heavy Metals Homoeostasis in Plants 丛枝菌根真菌在植物重金属平衡中的作用
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-06 DOI: 10.1007/s00344-024-11393-w
Ovaid Akhtar, Dheeraj Pandey, Ifra Zoomi, Uma Singh, Kanhaiya Lal Chaudhary, Rani Mishra, Neeraj Pandey
{"title":"Role of Arbuscular Mycorrhizal Fungi in Heavy Metals Homoeostasis in Plants","authors":"Ovaid Akhtar, Dheeraj Pandey, Ifra Zoomi, Uma Singh, Kanhaiya Lal Chaudhary, Rani Mishra, Neeraj Pandey","doi":"10.1007/s00344-024-11393-w","DOIUrl":"https://doi.org/10.1007/s00344-024-11393-w","url":null,"abstract":"<p>Arbuscular Mycorrhizal (AM) fungi have substantial involvement in the existence of plants under heavy metal (HM)-stressed conditions. An overwhelming number of studies are there which advocate for the AM fungi as a future tool for remediation and revegetation of HM-polluted soils. One of the major complications associated with AM fungi facilitated phytoremediation is that the AM association is very much host as well as HM specific. Diverse strains of AM fungi behave differently with diverse hosts and HMs. AM fungi in association with host plants enhance the tolerance of HMs to the host. It enhances the absorption of nutrients in deficient soil, whereas it decreases the accumulation of HMs in polluted soils. AM fungi enhance the biomass production and, thus, dilute the HM concentration in plants. The association of AM fungi also protects the host roots from exposure of HMs by trapping them in the extracellular polymeric substances and the glomalin secreted by the AM fungal hyphae. The hyphal components also contain hydroxyl and carboxyl ligands that can bind the positively charged HMs and immobilize them outside the soil. In hyperaccumulator plants, AM fungi contribute differently as the transporters of HMs increase the uptake of HMs from the substrates. In this way, it enhances the accumulation of HMs beyond the permissible level. Inside the AM fungi as well as in the host cell, these HMs are either converted to the less toxic forms or conjugated with Metallothionein (MT), Glutathione (GSH), and Phytochelatin (PC) and safely stored in the vacuole. All these functions are specifically controlled by a number of transporters of HMs localized in the AM fungal hyphae, inside the AM fungi and inside the host cell. GintABC1 is one of the most studied transporters in AM fungi regulating the Zn. In this review, a deeper insight into the all-possible mechanisms of AM fungi facilitated HM stress alleviation in plants is summarized and discussed.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Growth-Promoting Potential of Deinococci spp. Evaluated Using Zea mays and Lens Culinaris Crops 利用玉米和大菱鲆作物评估 Deinococci 菌属的植物生长促进潜力
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-05 DOI: 10.1007/s00344-024-11405-9
Manoj Kumar Chitara, Rajesh Pratap Singh, Narendra Kumar Singh, Yogendra Singh Rajpurohit, Hari S. Misra
{"title":"Plant Growth-Promoting Potential of Deinococci spp. Evaluated Using Zea mays and Lens Culinaris Crops","authors":"Manoj Kumar Chitara, Rajesh Pratap Singh, Narendra Kumar Singh, Yogendra Singh Rajpurohit, Hari S. Misra","doi":"10.1007/s00344-024-11405-9","DOIUrl":"https://doi.org/10.1007/s00344-024-11405-9","url":null,"abstract":"<p>Microbial-mediated plant growth promotion is an eco-friendly and sustainable approach under unprecedented climatic conditions. Today, available beneficial microbes for plant growth promotion have some limitations such as required specific growth conditions, etc. However, a bacterium family <i>Deinococci</i> spp. identified has some extraordinary, radioresistance and desiccation tolerance capabilities, that can help it survive in extremely harsh conditions, irrespective of serious injury and unpredictable climatic conditions, making it special compared to other microbial bioagents. The present investigation demonstrated the plant growth-prompting potential of <i>Deinoccci</i>, in maize (<i>Zea mays</i>) and lentil (<i>Lens culinaris</i>) crops. The experiment was conducted both in in vitro (laboratory) and in vivo (glasshouse) conditions. The results indicate that different species of <i>Deinococci</i> exhibited varying responses in maize and lentil<i>.</i> For instance, the combined (seed bio-priming and soil pre-inoculation) application of <i>D. radiodurans</i> 38 in maize enhanced a significantly higher percentage of seed germination, maximum shoot (47.72 cm) and root (10.19 cm) length, fresh shoot (3.44 g) and root (0.39 g) weight, dry shoot (0.348 g) and root (0.095 g) weight, strong seedling vigor (5791.6) and R:S (0.214), while <i>D. radiodurans</i> R1 in lentil promote cent per cent seed germination, maximum shoot (24.3 cm) and root (7.94 cm) length, fresh shoot (0.40 g) and root (0.032 g) weight, dry shoot (0.085 g) and root (0.023 g) weight, strong seedling vigor (3028.6) and R:S (0.33) as compared to individual application. Overall, our findings suggested that the combined application of the <i>Deinococci radiodurans</i> 38 and R1 showed higher plant growth promotion in maize and lentil, respectively, as compared to other strains. This suggests that it could be potentially used as an efficient alternative to promote growth in maize and lentil crops for both seed germination and biomass development irrespective of unpredictable environmental conditions.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Molecular Mechanism of Lignin Accumulation in Stipule Thorns of Zanthoxylum bungeanum: Insights from Transcriptomic and Targeted Metabolomic Analysis 揭示 Zanthoxylum bungeanum 托叶荆棘木质素积累的分子机制:转录组和靶向代谢组分析的启示
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-05 DOI: 10.1007/s00344-024-11410-y
Weilong Gao, Ling Zhou, Hao Zhong, Yuan Meng, Changle Li, Jianxin Wang, Jia Yao, Yulin Liu
{"title":"Unraveling the Molecular Mechanism of Lignin Accumulation in Stipule Thorns of Zanthoxylum bungeanum: Insights from Transcriptomic and Targeted Metabolomic Analysis","authors":"Weilong Gao, Ling Zhou, Hao Zhong, Yuan Meng, Changle Li, Jianxin Wang, Jia Yao, Yulin Liu","doi":"10.1007/s00344-024-11410-y","DOIUrl":"https://doi.org/10.1007/s00344-024-11410-y","url":null,"abstract":"<p><i>Zanthoxylum bungeanum</i> (<i>Zb</i>), an economically important tree, is widely cultivated in China. However, its abundant and intricate thorns pose challenges in management and harvesting, thereby reducing its economic benefits. Although the origin and formation mechanism of stipule thorns in <i>Zb</i> remain unclear, it is hypothesized that thorn hardening may be associated with lignin synthesis and accumulation. In this study, we utilized histologic, transcriptomic, and metabolomic analysis methods with stipule thorns at five distinct developmental stages (25 days, 40 days, 55 days, 70 days, and 80 days after flowering) to investigate the mechanisms underlying lignin accumulation and synthesis. Our findings revealed that guaiacyl and syringyl lignin were present in the stipule thorns of <i>Zb</i>. Lignification occurs from the top to bottom and from the outside to inside. Through a weighted gene co-expression network analysis and construction of a gene regulation network, we identified 20 genes significantly involved in lignin synthesis and metabolism including 10 structural genes and 9 transcription factors such as <i>MYB</i>, <i>bHLH</i>, <i>WRKY</i>, and <i>NAC</i>. Notably, our target gene prediction results of hub genes indicated that four <i>NAC</i> genes play a critical role in lignin synthesis. Furthermore, we predicted a possible NAC-MYB model gene-regulatory network. This research provides novel insights into the synthesis of lignin in <i>Zb</i>, while offering a molecular foundation for breeding varieties of thornless or soft-thorned <i>Zb</i>.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trinexapac-Ethyl Dose–Response Curve for Eucalyptus Growth and Hormonal Crosstalk Between Leaf and Shoot Apical Bud 桉树生长和叶片与嫩枝顶芽之间激素串扰的 Trinexapac-Ethyl 剂量反应曲线
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-05 DOI: 10.1007/s00344-024-11404-w
Allan Lopes Bacha, Renata Thaysa da Silva Santos, Juliana de Souza Rodrigues, Willians César Carrega, Esther Carrera Bergua, Timothy Lane Grey, Pedro Luís da Costa Aguiar Alves
{"title":"Trinexapac-Ethyl Dose–Response Curve for Eucalyptus Growth and Hormonal Crosstalk Between Leaf and Shoot Apical Bud","authors":"Allan Lopes Bacha, Renata Thaysa da Silva Santos, Juliana de Souza Rodrigues, Willians César Carrega, Esther Carrera Bergua, Timothy Lane Grey, Pedro Luís da Costa Aguiar Alves","doi":"10.1007/s00344-024-11404-w","DOIUrl":"https://doi.org/10.1007/s00344-024-11404-w","url":null,"abstract":"<p>Although recent studies have reported stimulatory effect of trinexapac-ethyl (TE) on eucalyptus growth, there is no consensus regarding the best dose to promote this response. Since TE acts in the gibberellin (GA) biosynthesis pathway, the study of hormonal crosstalk between the leaves and the shoot apical bud (SAB) can provide important information for understanding the positive effect previously reported. We evaluate the TE dose–response curve for eucalyptus growth in different soil moisture conditions (well watered—WW and 40% of field capacity—40-FC) and its effects on plant physiology, as well as the hormonal crosstalk between the leaves and SAB. TE caused a 49% increase in WW eucalypt growth, but not to plants under 40-FC. Estimated dose for the greatest stimulatory effect on WW eucalypt plants is 202 g a.i. ha<sup>−1</sup>. TE did not cause an increase in the plants' photosynthetic characteristics up to 15 days after application (DAA), suggesting a later increase in the eucalypt’s primary metabolism. Conversely to what have been reported for monocot crops, TE caused a fivefold increase in leaf GA<sub>1</sub> as a short-term effect (05 DAA), but significantly decreased SAB-GA<sub>1</sub> concentration. Leaf concentrations of indole-3-acetic acid, salicylic acid, abscisic acid and <i>N</i><sup>6</sup>-isopentenyladenine also increased. TE caused changes in both 13-hydroxylated (GA<sub>20</sub>, GA<sub>1</sub> and GA<sub>8</sub>) and non-13-hydroxylated (GA<sub>9</sub>, GA<sub>4</sub> and GA<sub>34</sub>) GA metabolic pathways in an organ-specific manner. Our results provide information to support the use of this plant growth regulator in eucalyptus plantations, as well as insights into the hormonal crosstalk between leaves and SAB in response to TE.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Combined Application of Phosphorus and Zinc on Root Configuration, Rhizosphere Soil Nutrients, and Environment of Apple Rootstock M9-T337 Seedlings 磷锌联合施用对苹果砧木 M9-T337 幼苗根系构造、根瘤土壤养分和环境的影响
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-02 DOI: 10.1007/s00344-024-11400-0
Xulin Xian, Wentai Sun, Jietao Zhai, Zhongxing Zhang, Yanlong Gao, Cailong Li, Liang Ding, Yanxiu Wang
{"title":"Effects of Combined Application of Phosphorus and Zinc on Root Configuration, Rhizosphere Soil Nutrients, and Environment of Apple Rootstock M9-T337 Seedlings","authors":"Xulin Xian, Wentai Sun, Jietao Zhai, Zhongxing Zhang, Yanlong Gao, Cailong Li, Liang Ding, Yanxiu Wang","doi":"10.1007/s00344-024-11400-0","DOIUrl":"https://doi.org/10.1007/s00344-024-11400-0","url":null,"abstract":"<p>This study aimed to investigate the impacts of the combined application of phosphorus (P) and zinc (Zn) on the root development and the rhizosphere soil environment of apple trees. A pot experiment was implemented with nine treatments, encompassing three P levels (0, 100, 200 mg kg<sup>−1</sup>) and three Zn levels (0, 15, 30 mg kg<sup>−1</sup>). The research focused on the effects of the combined application of P and Zn on root morphology, rhizosphere soil nutrients, soil enzyme activities, and the soil environment of M9-T337 apple rootstock seedlings. This was done to provide a scientific basis for the optimal application of P and Zn fertilizers in apple orchards. The results indicated that parameters such as the average root diameter, soil phosphatase activity, fractal dimension, total root length, total root volume, total root surface area, soil bacteria count, and catalase activity all increased first and then decreased as the zinc application rate increased. The highest values were observed in the P<sub>200</sub>Zn<sub>15</sub> treatment. The number of root tips, total number of internal connections, root topological index, soil available Zn, available P, urease activity, actinomycetes count, fungi counts, and sucrase activity exhibited different trends with increasing Zn dosage, but the parameter values for each index were significantly higher than those of the control treatment. The synergistic application of P and Zn has notably influenced the root morphology and the rhizosphere soil environment of M9-T337 apple rootstock seedlings. The optimal effect was observed under the P<sub>200</sub>Zn<sub>15</sub> treatment, demonstrating a synergistic interaction between P and Zn, thereby promoting root development and soil health. This improvement was manifested in the increased root diameter, enhanced soil phosphatase activity, expanded root length and volume, augmented root surface area, and heightened soil bacterial count and catalase activity. Moreover, the levels of available Zn, available P, and urease activity in the soil were elevated. Concurrently, the diversity of soil microbiota was also improved. These findings lay a solid foundation for maximizing the utility of P and Zn fertilizers in apple orchards, thus, aiding in the realization of sustainable agricultural practices and boosting apple production.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consortium of Endophytic Bacillus australimaris CK11 and Staphylococcus epidermidis CK9 from Commiphora gileadensis Mediates Tomato Resilience to Combined Salinity, Heat, and Drought Stresses 来自吉利莲的内生芽孢杆菌 CK11 和表皮葡萄球菌 CK9 的联合体促进番茄抵御盐度、高温和干旱的综合压力
IF 4.8 3区 生物学
Journal of Plant Growth Regulation Pub Date : 2024-07-02 DOI: 10.1007/s00344-024-11394-9
Syed Saad Jan, Nasir Ali Khan, Sajjad Asaf, Raheem Shahzad, Lubna, Muhammad Imran, Saqib Bilal, In-Jung Lee, Ahmed Al-Harrasi
{"title":"Consortium of Endophytic Bacillus australimaris CK11 and Staphylococcus epidermidis CK9 from Commiphora gileadensis Mediates Tomato Resilience to Combined Salinity, Heat, and Drought Stresses","authors":"Syed Saad Jan, Nasir Ali Khan, Sajjad Asaf, Raheem Shahzad, Lubna, Muhammad Imran, Saqib Bilal, In-Jung Lee, Ahmed Al-Harrasi","doi":"10.1007/s00344-024-11394-9","DOIUrl":"https://doi.org/10.1007/s00344-024-11394-9","url":null,"abstract":"<p>Climate change poses a critical threat to global agriculture. Plant growth-promoting bacteria (PGPB) present a sustainable approach to increase climate resilience. The study focused on isolating and screening abiotic stress-resistant endophytic bacteria from the Arabian balsam tree (<i>Commiphora gileadensis</i>); these bacteria can lessen the phytotoxic impacts of heat, salinity, and drought stress. <i>C. gileadensis</i> is known for its resilience to diverse abiotic stresses and hosts a diverse array of PGPB. Isolated endophytic bacteria were evaluated for their growth-promoting activities, including phosphate and silicate solubilization and indole3-acetic acid production, and screened for tolerance to multiple abiotic stresses. Out of 20 distinct endophytic bacterial isolates exhibiting various plant growth-promoting (PGP) traits, the <i>Staphylococcus epidermidis</i> CK9 strain and the <i>Bacillus australimaris</i> CK11 strain demonstrated remarkable resilience to a range of abiotic stresses, including heat, salinity, and drought. Tomato inoculation with sole or a consortium of CK9 and CK11 under combined abiotic stresses led to significantly enhanced plant growth attributes and photosynthetic pigments (chlorophyll <i>a</i>, <i>b</i> and carotenoids), reduced Na<sup>+</sup> uptake and maintained a high K<sup>+</sup>/Na<sup>+</sup> ratio. Combined abiotic stress-induced oxidative stress (lipid peroxidation and superoxide anion) was significantly counteracted by the enhanced accumulation of antioxidant activities (catalase and peroxidase) and upregulated expression of <i>Glutathione reductase</i> and <i>catalase</i> (<i>CAT</i>) genes compared with noninoculated plants. Co-inoculation promoted phytohormones crosstalk by downregulating abscisic acid and jasmonic acid accumulation while stimulating salicylic acid accumulation under stress conditions. This hormonal crosstalk significantly induced abiotic stress-related heat shock protein (HSP) genes (<i>HSP70</i> and <i>HSP90</i>) compared to noninoculated plants. This study provides valuable insights into the potential use of PGPB from <i>C. gileadensis</i> as a bioinoculant for enhancing tomato growth and yield under combined abiotic stress conditions. Future research will focus on the field assessment of this consortium in hot weather under saline- and drought-induced stresses to determine their effect on crop productivity.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信