{"title":"Network Embedding-Based Approach for Detecting Collusive Spamming Groups on E-Commerce Platforms","authors":"Jinbo Chao, Chunhui Zhao, Fuzhi Zhang","doi":"10.1155/2022/4354086","DOIUrl":"https://doi.org/10.1155/2022/4354086","url":null,"abstract":"Information security is one of the key issues in e-commerce Internet of Things (IoT) platform research. The collusive spamming groups on e-commerce platforms can write a large number of fake reviews over a period of time for the evaluated products, which seriously affect the purchase decision behaviors of consumers and destroy the fair competition environment among merchants. To address this problem, we propose a network embedding based approach to detect collusive spamming groups. First, we use the idea of a meta-graph to construct a heterogeneous information network based on the user review dataset. Second, we exploit the modified DeepWalk algorithm to learn the low-dimensional vector representations of user nodes in the heterogeneous information network and employ the clustering methods to obtain candidate spamming groups. Finally, we leverage an indicator weighting strategy to calculate the spamming score of each candidate group, and the top-k groups with high spamming scores are considered to be the collusive spamming groups. The experimental results on two real-world review datasets show that the overall detection performance of the proposed approach is much better than that of baseline methods.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"826 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116485032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compliance-Driven Cybersecurity Planning Based on Formalized Attack Patterns for Instrumentation and Control Systems of Nuclear Power Plants","authors":"Minsoo Lee, Hyun Kwon, Hyunsoo Yoon","doi":"10.1155/2022/4714899","DOIUrl":"https://doi.org/10.1155/2022/4714899","url":null,"abstract":"The instrumentation and control (I&C) system of a nuclear power plant (NPP) employs a cybersecurity program regulated by the government. Through regulation, the government requires the implementation of security controls in order for a system to be developed and operated. Accordingly, the licensee of an NPP works to comply with this requirement, beginning in the development phase. The compliance-driven approach is efficient when the government supervises NPPs, but it is inefficient when a licensee constructs them. The security controls described in regulatory guidance do not consider system characteristics. In other words, the development organization spends a considerable amount of time excluding unnecessary control items and preparing the evidence to justify their exclusion. In addition, security systems can vary according to the developer’s level of security knowledge, leading to differences in levels of security between systems. This paper proposes a method for a developer to select the appropriate security controls when preparing the security requirements during the early development phase; it is designed to ensure the system’s security and reduce the cost of excluding unnecessary security controls. We have formalized the representation of attack patterns and security control patterns and identified the relationships between these patterns. We conducted a case study applying RG 5.71 in the Plant Protection System (PPS) to confirm the validity of the proposed method.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"223 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125910571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autonomous Orbit Determination System of Navigation Satellite Based on Spaceborne GPS Technology","authors":"Li Yang, Haote Ruan, Yunhan Zhang","doi":"10.1155/2022/7463315","DOIUrl":"https://doi.org/10.1155/2022/7463315","url":null,"abstract":"In recent years, many low-orbit satellites have been widely used in the field of scientific research and national defense in China. In order to meet the demand of high-precision satellite orbit in China’s space, surveying and mapping, and other related fields, navigation satellites are of great significance. The UKF (unscented Kalman filter) method is applied to space targets’ spaceborne GPS autonomous orbit determination. In this paper, the UKF algorithm based on UT transformation is mainly introduced. In view of the situation that the system noise variance matrix is unknown or the dynamic model is not accurate, an adaptive UKF filtering algorithm is proposed. Simulation experiments are carried out with CHAMP satellite GPS data, and the results show that the filtering accuracy and stability are improved, which proves the algorithm’s effectiveness. The experimental results show that the Helmert variance component estimation considering the dynamics model can solve the problem of reasonable weight determination of BDS/GPS observations and effectively weaken the influence of coarse error and improve the accuracy of orbit determination. The accuracy of autonomous orbit determination by spaceborne BDS/GPS is 1.19 m and 2.35 mm/s, respectively.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133709239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PACAM: A Pairwise-Allocated Strategy and Capability Average Matrix-Based Task Scheduling Approach for Edge Computing","authors":"Feng Hong, Tianming Zhang, Bin Cao, Jing Fan","doi":"10.1155/2022/6430612","DOIUrl":"https://doi.org/10.1155/2022/6430612","url":null,"abstract":"With the development of the smart Internet of Things (IoT), an increasing number of tasks are deployed on the edge of the network. Considering the substantially limited processing capability of IoT devices, task scheduling as an effective solution offers low latency and flexible computation to improve the system performance and increase the quality of services. However, limited computing resources make it challenging to assign the right tasks to the right devices at the edge of the network. To this end, we propose a polynomial-time solution, which consists of three steps, i.e., identifying available devices, estimating device quantity, and searching for feasible schedules. In order to shrink the number of potential schedules, we present a pairwise-allocated strategy (PA). Based on these, a capability average matrix (CAM)-based index is designed to further boost efficiency. In addition, we evaluate the schedules by the technique for order preference by similarity to an ideal solution (TOPSIS). Extensive experimental evaluation using both real and synthetic datasets demonstrates the efficiency and effectiveness of our proposed approach.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127820995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multilevel Image Edge Detection Algorithm Based on Visual Perception","authors":"Hui Li","doi":"10.1155/2022/3502041","DOIUrl":"https://doi.org/10.1155/2022/3502041","url":null,"abstract":"Multilevel image edge repair results directly affect the follow-up image quality evaluation and recognition. Current edge detection algorithms have the problem of unclear edge detection. In order to detect more accurate edge contour information, a multilevel image edge detection algorithm based on visual perception is proposed. Firstly, the digital image is processed by double filtering and fuzzy threshold segmentation; Through the analysis of the contour features of the moving image, the threshold of the moving image features is set, and the latest membership function is obtained to complete the multithreshold optimization. Adaptive smoothing is used to process the contour of the object in the moving image, and the geometric center values of the two adjacent contour points within the contour range are calculated. According to the calculation results, the curvature angle is further calculated, and the curvature symbol is obtained. According to the curvature symbol, the contour features of the moving image are detected. The experimental results show that the proposed algorithm can effectively and accurately detect the edge contour of the image and shorten the reconstruction time, and the detection image resolution is high.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121046159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"User Authentication Method via Speaker Recognition and Speech Synthesis Detection","authors":"Hyun Park, Tae-Gyun Kim","doi":"10.1155/2022/5755785","DOIUrl":"https://doi.org/10.1155/2022/5755785","url":null,"abstract":"As the Internet has been developed, various online services such as social media services are introduced and widely used by many people. Traditionally, many online services utilize self-certification methods that are made using public certificates or resident registration numbers, but it is found that the existing methods pose the risk of recent personal information leakage accidents. The most popular authentication method to compensate for these problems is biometric authentication technology. The biometric authentication techniques are considered relatively safe from risks like personal information theft, forgery, etc. Among many biometric-based methods, we studied the speaker recognition method, which is considered suitable to be used as a user authentication method of the social media service usually accessed in the smartphone environment. In this paper, we first propose a speaker recognition-based authentication method that identifies and authenticates individual voice patterns, and we also present a synthesis speech detection method that is used to prevent a masquerading attack using synthetic voices.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126646031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mookambeswaran Vijayalakshmi, S. Shalinie, Ming-Hour Yang, Shou-Chuan Lai, Jia-Ning Luo
{"title":"A Blockchain-Based Secure Radio Frequency Identification Ownership Transfer Protocol","authors":"Mookambeswaran Vijayalakshmi, S. Shalinie, Ming-Hour Yang, Shou-Chuan Lai, Jia-Ning Luo","doi":"10.1155/2022/9377818","DOIUrl":"https://doi.org/10.1155/2022/9377818","url":null,"abstract":"Supply chain management (SCM) governance is the streamline of the IoT product life cycle from its production to delivery. Integrating blockchain with supply chain management is essential to ensure end-to-end tracking, trustiness between manufacturers and customers, fraud and counterfeit elimination, and customizing administrative costs and paperwork. This paper proposes an RFID ownership transfer protocol with the help of zk-SNARKs (Zero Knowledge-Succinct Noninteractive Arguments of Knowledge) using Ethereum blockchain. When the owner performs RFID transfer, the transferred information will be recorded on the blockchain using smart contracts. When using a smart contract to transfer ownership on the Ethereum blockchain, because the content on the blockchain will not be tampered with, all accounts in the Ethereum can view the transfer results and verify them. The privacy of the supply chain is attained by generating the proof of product code via zk-SNARKs algorithm. This algorithm also enhances the scalability of the supply chain system by creating a trusted setup in off-chain mode.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"93 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131878041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Arif, F. Ajesh, Shermin Shamsudheen, M. Shahzad
{"title":"Secure and Energy-Efficient Computational Offloading Using LSTM in Mobile Edge Computing","authors":"Muhammad Arif, F. Ajesh, Shermin Shamsudheen, M. Shahzad","doi":"10.1155/2022/4937588","DOIUrl":"https://doi.org/10.1155/2022/4937588","url":null,"abstract":"The use of application media, gamming, entertainment, and healthcare engineering has expanded as a result of the rapid growth of mobile technologies. This technology overcomes the traditional computing methods in terms of communication delay and energy consumption, thereby providing high reliability and bandwidth for devices. In today’s world, mobile edge computing is improving in various forms so as to provide better output and there is no room for simple computing architecture for MEC. So, this paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks is done using the LSTM algorithm, the strategy for computation offloading of mobile devices is based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling helps to optimize the edge computing offloading model. Experiments show that our proposed architecture, which consists of an LSTM-based offloading technique and routing (LSTMOTR) algorithm, can efficiently decrease total task delay with growing data and subtasks, reduce energy consumption, and bring much security to the devices due to the firewall nature of LSTM.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131367437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DDoS Defense Method in Software-Defined Space-Air-Ground Network from Dynamic Bayesian Game Perspective","authors":"Zhaobin Li, Bin Yang, Xinyu Zhang, Chao Guo","doi":"10.1155/2022/1886516","DOIUrl":"https://doi.org/10.1155/2022/1886516","url":null,"abstract":"The centralized management of Software-Defined Network (SDN) brings convenience to Space-Air-Ground Integrated Networks (SAGIN), which also makes it vulnerable to Distributed Denial of Service (DDoS). At present, the popular detection methods are based on machine learning, but most of them are fixed detection strategies with high overhead and real-time control, so the efficiency is not high. This paper designs different defense methods for different DDoS attacks and constructs a multitype DDoS defense model based on a dynamic Bayesian game in the Software-Defined Space-Air-Ground Integrated Networks (SD-SAGIN). The proposed game model’s Nash equilibrium is solved based on the different costs and payoffs of each method. We simulated the attack and defense of DDoS in Ryu controller and Mininet. The results show that, under our model, the attacker and defender’s strategies are in a dynamic balance, and the controller can effectively reduce the defense cost while ensuring detection accuracy. Compared with the existing traditional Support Vector Machine (SVM) defense method, the performance of the proposed method is better, and it provides one of the references for DDoS defense in SD-SAGIN.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131388543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}