{"title":"The Inertia of Light and the Isotropic and Anisotropic Properties of Electro-magnetic Mass","authors":"Wim Vegt","doi":"10.11648/j.ajaa.20190702.11","DOIUrl":"https://doi.org/10.11648/j.ajaa.20190702.11","url":null,"abstract":"Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the “Theory of General Relativity” with the publication: “Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well known law in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrodinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.","PeriodicalId":166360,"journal":{"name":"American Journal of Astronomy and Astrophysics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121488178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Production of Terrestrial Meteorites – Moon Accretion and Lithopanspermia","authors":"M. Beech, M. Comte, I. Coulson","doi":"10.11648/J.AJAA.20190701.11","DOIUrl":"https://doi.org/10.11648/J.AJAA.20190701.11","url":null,"abstract":"The conditions under which terrestrial, impact-derived ejecta can be launched into cis-lunar space is studied. A numerical code is developed in order to follow the ablation and deceleration conditions of material ejected from the Earth’s surface and outwards through the atmosphere. The deceleration filtering-effect imposed by Earth’s atmosphere results in multi-meter-sized, 5 to 20 meters across, fragments escaping into cis-lunar space being favored. Smaller fragments tend to be more rapidly decelerated than larger ones and are re-accreted by the Earth. The conditions under which Earth-ejected material might impact upon the Moon is additionally considered. It is found that for encounter speeds smaller than some 7 km/s, terrestrial meteorites might be expected to survive upon impact (that is they will not undergo shock melting) when encountering the Moon’s regolith. It is argued that terrestrial meteorites may well survive, with identifiable features (fusion crust and mineralogy), for long periods of time within the lunar regolith (a result recently vindicated through the discovery of terrestrial material – launched during the late heavy bombardment – contained within a lunar impact breccia #14321, collected during the Apollo 14 Moon landing mission). Further to this, the important role that terrestrial meteorites must have played in transporting microbial life to other potentially habitable locations within the solar system is discussed.","PeriodicalId":166360,"journal":{"name":"American Journal of Astronomy and Astrophysics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133139451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}