{"title":"Ageing with Traumatic Brain Injury: Long-Term Cognition and Wellbeing.","authors":"Amber Ayton, Gershon Spitz, Amelia J Hicks, Jennie Ponsford","doi":"10.1089/neu.2024.0524","DOIUrl":"https://doi.org/10.1089/neu.2024.0524","url":null,"abstract":"<p><p>Whether and how traumatic brain injury (TBI) impacts ageing in the decades post-injury remains a matter of debate, partly due to a lack of controlled studies. This study examined the long-term impact of TBI on cognition and wellbeing in middle-aged and older adults and explored the relationship between age, cognition, and wellbeing, compared with a non-TBI control group. Cross-sectional data from 143 participants aged ≥40 with moderate-severe TBI (6-33 years post-injury; mean age 59.64) were compared with 71 non-TBI controls (mean age 62.10) group matched on age, gender, and premorbid IQ. Individuals with significant confounding comorbidities were excluded. A battery of neuropsychological tests and wellbeing measures (emotional distress, sleep, health-related quality of life [HRQoL]) was administered. Older age and TBI were each independently associated with poorer cognition across multiple domains (<i>p</i> < 0.05). The relationship between verbal learning and memory impairment post-TBI differed between age groups: individuals with TBI in their 40s-60s performed significantly worse than same-aged controls on verbal story acquisition (<i>B</i> = 0.09, <i>p =</i> 0.040, 95% confidence interval [CI] [0.004, 0.17]) and recall (<i>B</i> = 0.12, <i>p =</i> 0.009, 95% CI [0.03, 0.21]), and verbal wordlist recall (<i>B</i> = 0.11, <i>p</i> = 0.007, 95% CI [0.03, 0.19]). In comparison, no significant group differences in verbal memory emerged for ages 70-90. The TBI group reported greater emotional distress (<i>B</i> = 3.55, <i>p</i> < 0.001, 95% CI [1.73, 5.37]), poorer sleep quality (<i>B</i> = 1.07, <i>p =</i> 0.016, 95% CI [0.20, 1.94]), and poorer physical HRQoL (<i>B</i> = -4.26, <i>p =</i> 0.003, 95% CI [-7.08, -1.43]) than controls at all ages. Poorer physical HRQoL was related to poorer cognition post-TBI (<i>p</i> < 0.05). Our results challenge the notion that TBI exacerbates ageing. Moderate-severe TBI resulted in significant long-term impairments in cognition and wellbeing, with verbal learning and memory more impaired during middle-adulthood but not older adulthood compared to controls. TBI was not associated with changes to wellbeing with ageing. Intervention for verbal memory deficits in middle-aged adults with TBI is important, along with wider long-term supports for cognition, wellbeing, and activity participation in all individuals with TBI.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143976617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marissa Cusimano, Veronica J Tom, John D Houle, Shaoping Hou
{"title":"Passive Hindlimb Cycling Enhances Tolerance of Cardiac Electrical Conduction in Rats with Spinal Cord Injuries.","authors":"Marissa Cusimano, Veronica J Tom, John D Houle, Shaoping Hou","doi":"10.1089/neu.2025.0021","DOIUrl":"https://doi.org/10.1089/neu.2025.0021","url":null,"abstract":"<p><p>High-level spinal cord injury (SCI) often disrupts supraspinal control of sympathetic input to the heart. The resulting imbalance in the autonomic nervous system increases the risk of developing cardiac arrhythmias. It was previously demonstrated that passive hindlimb cycling (PHLC) effectively maintains or improves bodily function including cardiovascular performance following SCI. However, it remains unclear whether the exercise can affect cardiac electrical disorders. To address this specific question, we complemented a complete SCI at a high-thoracic level in rats and then performed PHLC for 5 or 10 weeks. Naive rats or those receiving injury alone served as controls. Subsequently, a telemetric transmitter was implanted to record blood pressure and electrocardiogram. In 24-h resting recordings, cycling training did not influence SCI-induced hypotension but significantly reduced the events of spontaneous autonomic dysreflexia. When colorectal distension was employed to artificially trigger autonomic dysreflexia, a fewer number of severe arrhythmias (e.g., atrioventricular block, premature ventricular contraction single, and sinus pause) were found in animals with 10-week PHLC compared with injury controls. As a stress test, a series of increasing concentrations of dobutamine was administered to stimulate cardiac sympathetic activity. Consequently, various types of arrhythmias occurred in animals with SCI alone, whereas very few were detected in animals obtaining exercise training for 10 weeks. Furthermore, pharmacological intervention disclosed that exercise appeared to reduce unopposed parasympathetic tone that arose post to injury. Thus, the results suggest that activity-based training for the long term improves autonomic balance to enhance tolerance of cardiac electrical conduction following SCI.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143997403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bharat Phani Vaikuntam, Lisa N Sharwood, Luke B Connelly, James W Middleton
{"title":"Economic Optimization Through Adherence to Best Practice Guidelines: A Decision Analysis of Traumatic Spinal Cord Injury Care Pathways in Australia.","authors":"Bharat Phani Vaikuntam, Lisa N Sharwood, Luke B Connelly, James W Middleton","doi":"10.1089/neu.2023.0674","DOIUrl":"https://doi.org/10.1089/neu.2023.0674","url":null,"abstract":"<p><p>Traumatic spinal cord injuries (TSCIs) have significant health, economic, and social effects on individuals, families, and society. In this economic analysis modeling study, we used record-linked administrative patient data from New South Wales, Australia, to construct a decision tree model to compare the economic cost of acute care for patients with TSCI under current clinical pathways with an optimal care (consensus guidelines-informed) modeled pathway. The optimal care pathway included direct transfer to a specialist SCI Unit (SCIU) or indirect transfer to SCIU within 24 h of injury, surgical intervention within 12 h of injury, and subsequent inpatient rehabilitation. Propensity score matching with inverse probability of treatment weighting (IPTW) was used to reduce potential confounding from baseline differences in patient characteristics. A generalized linear model regression with gamma distribution and log link, weighted with IPTW scores, was used for cost and length of stay (LoS) estimations to reduce any residual bias. Sensitivity analyses quantified the sensitivity of the findings to key model parameters. From the healthcare payer perspective, our economic analysis found acute TSCI care at an SCIU was more expensive, with delayed patient transfer pathways, surgery, and timing of surgery driving higher per-patient costs ($14,322 at specialist centers). Probabilistic sensitivity analysis (PSA) using 10,000 Monte Carlo iterations showed the modeled optimal pathway as the expensive option in the majority (86%) of stimulations. However, the modeled direct transfer care pathway demonstrated economic improvements compared to current care pathways, despite a higher upfront cost ($25,428 per patient), the modeled pathway reduced the episode LoS by 5 days (23 days vs. 28 days) on average, generating system-level savings of $20,628 per patient. In PSA, increasing the proportion of patients directly transferred to SCIU by 25%, the optimized pathway was preferred in 28.3% of the simulations. Furthermore, adopting this pathway lowered the incremental per patient cost to $17,157 while preserving a 5-day LoS benefit compared to current pathways (22 days vs. 27 days), which could generate potential savings of $3,471 per patient. Our findings show that guideline-based acute care management is initially resource-intensive but efficient in terms of patient LoS, with a higher proportion of direct transfers resulting in cost savings of $3,471 per patient, which represent system-level benefits from adopting the modeled pathway, rather than episode-level savings. Following consensus guidelines for acute care can provide an economically sustainable approach to resource-intensive patient needs while improving outcomes, as demonstrated in previous studies. In summary, while more intensive, adhering to clinical guidelines of direct transfer to SCIU demonstrates value for patients and health systems. Standardization to optimize time to surgery can achieve impr","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143997505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nancy Temkin, Jason Barber, Joan Machamer, Gabriela Sugar, Molly Rose Morrissey, Kim Boase, Evan Zahniser, Yelena G Bodien, Joseph T Giacino, Michael A McCrea, Lindsay D Nelson, Murray B Stein, Sabrina Taylor, Claudia Robertson, David Okonkwo, Geoff Manley, Sureyya Dikmen
{"title":"Contribution of Extracranial Injuries to GOSE Scores after Traumatic Brain Injury TBI: A TRACK-Traumatic Brain Injury Study.","authors":"Nancy Temkin, Jason Barber, Joan Machamer, Gabriela Sugar, Molly Rose Morrissey, Kim Boase, Evan Zahniser, Yelena G Bodien, Joseph T Giacino, Michael A McCrea, Lindsay D Nelson, Murray B Stein, Sabrina Taylor, Claudia Robertson, David Okonkwo, Geoff Manley, Sureyya Dikmen","doi":"10.1089/neu.2024.0421","DOIUrl":"10.1089/neu.2024.0421","url":null,"abstract":"<p><p>The Glasgow Outcome Scale Extended (GOSE) is the most widely used outcome measure for hospital-based studies of traumatic brain injury (TBI). The GOSE may be administered several ways, the choice depending on the purpose of the research. In this investigation, we evaluated the effect of administering the GOSE to collect functional disability attributed to all injuries sustained (GOSE-All) or excluding the impact of extracranial injuries (GOSE-TBI). We examined the differences in reported disability between the two administration methods at 2 weeks, 3 months, 6 months, and 12 months after injury. Data are summarized from 2288 individuals who were enrolled in the prospective observational Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) cohort study. The distribution of scores is summarized by time after injury, brain injury severity, and extracranial injury severity. Dichotomizing the GOSE varying ways, differences in the prevalence of unfavorable outcomes for GOSE-All versus GOSE-TBI range from none to 42 percentage points. Discrepancies in disability captured by GOSE-All and GOSE-TBI decrease with greater TBI severity, no serious extracranial injuries, and longer time post-injury. It is important for researchers, given the aims of their studies, to decide in advance whether GOSE classification should be based on the effects of all injuries sustained or excluding the effects of extracranial injuries so as to emphasize the effects of the brain injury, as well as how disability due to emotional consequences of injury and other circumstances will be scored. Instructions to the respondent and outcomes examiner need to be clear about what causes of disability are to be included. The TBI Common Data Elements should include information that reflects the method that was used to collect the GOSE data and data repositories should disclose which data collection method was used for a given study.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary U Simons, Alyssa Maio, Daniel L Huber, John D Corrigan, Nancy Temkin, Marin Darsie, Ryan Kitagawa, John Whyte, Joseph T Giacino, Murray B Stein, Geoffrey T Manley, Michael A McCrea, Lindsay D Nelson
{"title":"Traumatic Brain Injury Diagnostic Interview: Development, Interrater Reliability, and 2-Week Post-Injury Clinical Profiles.","authors":"Mary U Simons, Alyssa Maio, Daniel L Huber, John D Corrigan, Nancy Temkin, Marin Darsie, Ryan Kitagawa, John Whyte, Joseph T Giacino, Murray B Stein, Geoffrey T Manley, Michael A McCrea, Lindsay D Nelson","doi":"10.1089/neu.2024.0402","DOIUrl":"10.1089/neu.2024.0402","url":null,"abstract":"<p><p>Because most traumatic brain injuries (TBIs) do not present with objective indicators (e.g., neuroimaging findings) to confirm the diagnosis, clinicians often rely on self- or observer-reporting of alteration of consciousness (AOC; e.g., loss of consciousness [LOC], amnesia, other signs of altered mental status), and symptoms to make diagnoses. Moreover, there is no universal agreement on signs and symptoms to sufficiently diagnose TBI, which leads to variability and ambiguity in how TBI is diagnosed in clinical and research settings. The lack of standardized procedures for the diagnosis of acute TBI is a major challenge that hampers the ability to evaluate and compare TBI studies and advance the science and treatment of TBI. We present a new semi-structured TBI Diagnostic Interview (TBI-DI), developed for prospective TBI research to collect injury information important to verifying eligibility for the diagnosis of TBI. Specifically, the TBI-DI collects patient (and/or witness) reports of head trauma, AOC (including LOC and amnesia), and TBI-related symptomology. We describe the protocol, interrater reliability of the TBI-DI items to the same audio-recorded interview, and observed injury characteristics for interviews conducted at 2 weeks post-injury. The sample comprised 335 interviews (320 self-reported, 10 informant-reported, and 5 both) collected on individuals with TBI who were prospectively recruited from 4 U.S. level 1 trauma centers from 2019 to 2023. Cohen's kappa was calculated to summarize interrater reliability <i>n</i> = 288 interviews. UpSet plots were created to illustrate the prevalence of distinct profiles of signs of AOC and symptom reporting. Overall, there was a near-perfect agreement between raters for all AOC descriptors (<i>κ</i> = 0.85-0.92) and symptom items (<i>κ</i> ranging from 0.92 to 0.99). We observed diverse profiles of AOC, with 45% manifesting witnessed LOC, post-traumatic amnesia, or other altered mental status. Patients (<i>n</i> = 325) self-reported 256 different combinations of the 14 acute symptoms included in the interview (most commonly experiencing headache, dizziness, fatigue, and difficulty concentrating). The TBI-DI and associated SOP appear well-suited for use in a multicenter prospective study of TBI. Future research should examine the stability of reporting by respondents and the alignment between interview and objective clinical information. The TBI-DI solicits diverse acute diagnostic information that, when combined with clinical information (including confounding factors) and objective injury indicators, may inform more rigorous scientific reporting and evidence-based TBI diagnostic practices.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dr. Jerry Sliver-In Memoriam.","authors":"","doi":"10.1089/neu.2025.0103","DOIUrl":"https://doi.org/10.1089/neu.2025.0103","url":null,"abstract":"","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response Letter of Liu and Zhang.","authors":"Nikki S Thüss","doi":"10.1089/neu.2025.0111","DOIUrl":"https://doi.org/10.1089/neu.2025.0111","url":null,"abstract":"","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olivia H Wireman, Ellie L Sams, Lynnet E Richey, Gabrielle V Hammers, Andrew N Stewart, William M Bailey, Samir P Patel, John C Gensel
{"title":"Complete High Thoracic Spinal Cord Injury Causes Bowel Dysfunction in Mice.","authors":"Olivia H Wireman, Ellie L Sams, Lynnet E Richey, Gabrielle V Hammers, Andrew N Stewart, William M Bailey, Samir P Patel, John C Gensel","doi":"10.1089/neu.2024.0277","DOIUrl":"https://doi.org/10.1089/neu.2024.0277","url":null,"abstract":"<p><p>Bowel dysfunction, is a prevalent and life-impacting comorbidity of spinal cord injury (SCI) with no long-term treatment available. SCI-induced colon changes including motility and fibrosis are understudied as are strategies to address SCI bowel dysfunction. This need remains partly due to the lack of a mouse model that recapitulates the human condition. We hypothesized that a high thoracic spinal transection in mice would trigger bowel dysfunction with coincident colon pathology similar to humans and rats after SCI. We observed bowel dysfunction as increased fecal pellet numbers within the colon, smaller pellet size, and decreased motility. Fecal pellets numbers in the colon increased significantly in SCI animals versus sham (laminectomy only) injuries by 4 days postinjury (dpi) and persisted to 7 and 21 dpi. The number of pellets expelled (fecal output) significantly decreased in SCI versus sham animals at both 7 and 20 dpi. Pellet size was significantly decreased in SCI animals at 7 and 14 dpi, collectively indicative of decreased motility with SCI. SCI caused non-significant reductions in colonic motility (bead expulsion assay) at all three timepoints. Through <i>ex vivo</i> myograph analyses of live colon sections, we detected significant increase in the maximal contractility of the circular musculature from both the proximal and distal colon after SCI at 21 dpi. At the same time point, distal colons displayed significant collagen deposition in the musculature after SCI. Collectively, these findings demonstrate bowel dysfunction immediately after injury that continues in the distal colon over time. Establishing this mouse model enables further interrogation using transgenic models.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of neurotraumaPub Date : 2025-04-01Epub Date: 2024-08-27DOI: 10.1089/neu.2024.0043
Lara M Wittine, Jessica M Ketchum, Marc A Silva, Flora M Hammond, Joyce S Chung, Karina Loyo, Jose Lezama, Risa Nakase-Richardson
{"title":"Mortality Among Veterans Following Traumatic Brain Injury: A Veterans Administration Traumatic Brain Injury Model System Study.","authors":"Lara M Wittine, Jessica M Ketchum, Marc A Silva, Flora M Hammond, Joyce S Chung, Karina Loyo, Jose Lezama, Risa Nakase-Richardson","doi":"10.1089/neu.2024.0043","DOIUrl":"10.1089/neu.2024.0043","url":null,"abstract":"<p><p>Few studies have examined long-term mortality following traumatic brain injury (TBI) in a military population. This is a secondary analysis of a prospective, longitudinal study that examines long-term mortality (up to 10 years) post-TBI, including analyses of life expectancy, causes of death, and risk factors for death in service members and veterans (SM/V) who survived the acute TBI and inpatient rehabilitation. Among 922 participants in the study, the mortality rate was 8.3% following discharge from inpatient rehabilitation. The mean age of death was 54.5 years, with death occurring on average 3.2 years after injury, and with an average 7-year life expectancy reduction. SM/V with TBI were nearly four times more likely to die compared with the U.S. general population. Leading causes of death were external causes of injury, circulatory disease, and respiratory disorders. Also notable were deaths due to late effects of TBI itself and suicide. Falls were a significant mechanism of injury for those who died. Those who died were also more likely to be older at injury, unemployed, non-active duty status, not currently married, and had longer post-traumatic amnesia, longer rehabilitation stays, worse independence and disability scores at rehabilitation discharge, and a history of mental health issues before injury. These findings indicate that higher disability and less social supportive infrastructure are associated with higher mortality. Our investigation into the vulnerabilities underlying premature mortality and into the major causes of death may help target future prevention, surveillance, and monitoring interventions.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"745-757"},"PeriodicalIF":3.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of neurotraumaPub Date : 2025-04-01Epub Date: 2024-07-05DOI: 10.1089/neu.2024.0076
Safira Dharsee, Christianne Laliberté Durish, Ken Tang, Brian L Brooks, Melanie Noel, Ashley L Ware, Miriam H Beauchamp, William Craig, Quynh Doan, Stephen B Freedman, Bradley G Goodyear, Jocelyn Gravel, Roger Zemek, Keith Owen Yeates
{"title":"Association of Psychological Resilience, Cognitive Reserve, and Brain Reserve with Post-Concussive Symptoms in Children with Mild Traumatic Brain Injury and Orthopedic Injury: An A-CAP Study.","authors":"Safira Dharsee, Christianne Laliberté Durish, Ken Tang, Brian L Brooks, Melanie Noel, Ashley L Ware, Miriam H Beauchamp, William Craig, Quynh Doan, Stephen B Freedman, Bradley G Goodyear, Jocelyn Gravel, Roger Zemek, Keith Owen Yeates","doi":"10.1089/neu.2024.0076","DOIUrl":"10.1089/neu.2024.0076","url":null,"abstract":"<p><p>Protective factors, including psychological resilience, cognitive reserve, and brain reserve, may be positively associated with recovery after pediatric mild traumatic brain injury (mTBI) but are yet to be studied concurrently. We sought to examine these factors as moderators of post-concussive symptoms (PCS) in pediatric mTBI compared with mild orthopedic injury (OI). Participants included 967 children (633 mTBI, 334 OI) aged 8-16.99 years, recruited from 5 Canadian pediatric emergency departments as part of a prospective longitudinal cohort study. At 10 days post-injury, psychological resilience was measured using the Connor-Davidson Resilience Scale and brain reserve was measured using total brain volume derived from structural magnetic resonance imaging. Cognitive reserve was measured at 3 months post-injury using IQ scores from the Wechsler Abbreviated Scale of Intelligence-Second Edition. Cognitive and somatic PCS were measured using child and parent ratings on the Health and Behavior Inventory, completed weekly for 3 months and biweekly to 6 months. Analyses involved generalized least-squares regression models using restricted cubic splines. Covariates included age at injury, sex, racialized identity, material and social deprivation, pre-injury migraine and concussion history, and retrospective pre-injury PCS. Psychological resilience moderated group differences in parent-reported PCS. At 30 days post-injury, estimated group differences in parent-reported cognitive and somatic PCS (mTBI > OI) were larger at higher (75th percentile) resilience scores (<i>Est</i> = 2.25 [0.87, 3.64] and <i>Est</i> = 2.38 [1.76, 3.00], respectively) than at lower (25th percentile) resilience scores (<i>Est</i> = 1.44 [0.01, 2.86] and <i>Est</i> = 2.08 [1.45, 2.71], respectively). Resilience did not moderate group differences in child-reported PCS but was negatively associated with child-reported PCS in both groups (<i>p</i>s ≤ 0.001). Brain reserve (i.e., total brain volume [TBV]) also moderated group differences, but only for parent-reported somatic PCS (<i>p</i> = 0.018). Group difference (mTBI > OI) at 30 days was larger at smaller (25th percentile) TBV (<i>Est</i> = 2.78 [2.17, 3.38]) than at larger (75th percentile) TBV (<i>Est</i> = 1.95 [1.31, 2.59]). TBV was not associated with parent-reported cognitive PCS or child-reported PCS. IQ did not moderate PCS in either group but had a significant non-linear association in both groups with child-reported somatic PCS (<i>p</i> = 0.018) and parent-reported PCS (<i>p</i> < 0.001), with higher PCS scores at both lower and higher IQs. These findings suggest that higher resilience predicts fewer PCS, but less strongly after mTBI than OI; greater brain reserve may reduce the effect of mTBI on somatic PCS; and cognitive reserve has an unexpected curvilinear association with PCS across injury types. The results highlight the importance of protective factors as predictors of recovery and potential targets for in","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"731-744"},"PeriodicalIF":3.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}