A. Alimin, L. Kadidae, L. Agusu, L. Ahmad, S. J. Santosa, A. Asria
{"title":"Formation Mechanisms of Co-existence of α-Fe and Iron Oxides Nanoparticles Decorated on Carbon Nanofibers by a Simple Liquid Phase Adsorption-Thermal Oxidation","authors":"A. Alimin, L. Kadidae, L. Agusu, L. Ahmad, S. J. Santosa, A. Asria","doi":"10.14447/jnmes.v25i3.a07","DOIUrl":"https://doi.org/10.14447/jnmes.v25i3.a07","url":null,"abstract":"We propose formation mechanisms of co-existence of α-Fe and iron oxides nanoparticles decorated on CNFs. The α-Fe nanoparticles are produced via oxidation-reduction mechanisms, which occur in liquid phase adsorption (LPA) assisted by ultrasonic energy, while α-Fe2O3 nanoparticles are thermally formed through mechanisms of Lewis acidbase. In addition, Fe3O4 is thermally formed by reducing Fe2O3 by CNFs. Liquid phase adsorption assisted by ultrasonic energy under ambient temperature using Fe(NO3)3•9H2O as a precursor of iron oxides and α-Fe has been applied. Then, as prepared, Fe(III)@CNFs were thermally calcined at 573 K under air atmosphere in various holding times ranging from 0.5 to 2 h. XRD data confirmed that α- Fe2O3 and Fe3O4 had been successfully grown onto CNFs. Moreover, the presence of the iron oxides and iron nanoparticles was studied by the SEMEDX technique. The iron oxide nanoparticles appeared after a heating period of 0.5h. However, at a holding time of 0.5 h, we found an exciting and unexpected phenomenon where oxygen content is zero percent while Fe is 0.23 wt %. It implies that α-Fe nanoparticles were formed earlier than α-Fe2O3 and Fe3O4 as the proposed mechanisms. Formation mechanisms of iron and its oxides such as α-Fe2O3 and Fe3O4 decorated on CNFs through liquid-phase adsorption followed by thermally treatment technique in this work is expected to give significant contribution in the field of nanocomposite materials, especially for anode materials based on iron oxides.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45792000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Voltage Analysis of Multilevel Diode Clamped Inverter with SVPWM Technique for Energy Storage Management","authors":"P. Prasad, C. Rao, G. Sukumar, M. Sushama","doi":"10.14447/jnmes.v25i2.a07","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a07","url":null,"abstract":"The quantity of direct current voltage steps that are needed by the inverter connect is characterized based on the quantity of levels in an inverter bridge to accomplish a specific electric potential at its output. The best technique for settling the voltages applied to the gadgets is by clipping therefore utilizing dc voltage sources or huge capacitors, which momentarily act as voltage sources. Multilevel topology dependent on specific guideline, the input voltages applied to the devices can be controlled and restricted. A benefit of multilevel inverters contrasted that the yield voltage spectra are altogether better performed. Henceforth, the yield potentials can be sifted with more modest responsive segments, and furthermore, the exchanging frequencies of the gadgets can be diminished. Two advantages with the capacity to manage higher voltage levels present on multilevel inverters is a vital job in the field of high quality produced wave form applications. In this paper, the three levels Diode-clamped inverter incorporates displaying, recreation, plan execution, and examination. Space Vector Balance will be utilized, to dispose of the basic mode electric potentials by exchanging between the various states.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42331689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Guemache, A. Bouchelaghem, M. Drif, F. Kahoul, L. Hamzioui
{"title":"Properties and Characteristic of Perovskite Type Ca1-xSrxMnO3","authors":"A. Guemache, A. Bouchelaghem, M. Drif, F. Kahoul, L. Hamzioui","doi":"10.14447/jnmes.v25i2.a09","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a09","url":null,"abstract":"Ca1-xSrxMnO3 (x = 0, 0.1, 0.2) nanoparticules were synthesized by the co- precipitation method. The structural analysis reveals the presence of Octahedral coordination of MnO4. Fourier transform infrared spectroscopy (FTIR) spectra of MnO4 show the occurrence of O-Mn-O vibrational mode at around 590 cm-1. The XRD indicates that the samples are Rhombohedral lattice. The differential and thermo gravimetric analysis, curve obtained from the composition x=0.1,it has distinct pure phase at 600°C. The study of electrochemical behavior was carried out by cyclic Voltammetry (CV) and impedance spectroscopy (EIS).Show that the apparent electrochemical activity improves by increasing the strontium concentration. This is due to the particle size effect of strontium.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42511111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sethuramachandran Thanikaikarasan, R. Perumal, R. Kanimozhi, M. Saravannan, P. S. Suja Ponmini
{"title":"Role of Transparent Nature Conducting Substrate on Physical, Chemical and Optical Properties of Electrochemically Grown CdSe and CdSe: Fe Thin Films","authors":"Sethuramachandran Thanikaikarasan, R. Perumal, R. Kanimozhi, M. Saravannan, P. S. Suja Ponmini","doi":"10.14447/jnmes.v25i2.a03","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a03","url":null,"abstract":"Semiconductors of II–VI group considered as interesting candidate for many researchers owing to its wide variety of applications in industries such as solar cells, solar selective coatings and optoelectronic devices. Chalcogenides of Cadmium received much attention due to its important structural feature, film composition, electronic and optical properties. The technique of low cost, low temperature electrochemical deposition has been employed to prepare Cadmium Selenide and Iron incorporated Cadmium Selenide thin films on transparent nature conducting substrates. The technique of X-ray diffraction has been used to identify crystalline nature and structural features of the deposited films. The method of Energy dispersive X-ray analysis has been used to find out the stoichiometric nature of the deposited films. The parameters viz., crystallite size, strain, dislocation density are estimated for the deposited films. The method of Ultraviolet-Visible spectroscopic measurements has been carried out to determine the optical properties of the deposited films. The deposited films found to exhibit band gap value in the range between 1.67 and 1.74 eV and the value of optical parameters refractive index and extinction coefficient, were estimated.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41617498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pitting Corrosion and Mechanical Properties of Direct Current and Pulsed Reverse Current Electrodeposited Nickel-Tungsten Coatings","authors":"M. Dadvand, O. Savadogo","doi":"10.14447/jnmes.v25i2.a06","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a06","url":null,"abstract":"The electrochemical corrosion and mechanical properties of direct current and pulsed reverse current electrodeposited nickel and nickel-tungsten were investigated by using cyclic polarization measurement and nano-indentation techniques. Direct and pulsed reverse current electrodeposited nickel-tungsten coatings revealed a significant higher resistance to pitting corrosion when compared to direct and pulsed reverse current deposited nickel. Furthermore, pulsed reverse current electrodeposited nickel-tungsten displayed the most noble corrosion potential and higher corrosion resistance compared to direct current electrodeposited nickel-tungsten. This was attributed to the more nano- crystalline structure of the pulsed-reverse current deposited coatings when compared to that of the direct current electrodeposited nickel-tungsten. The average modulus for both direct and pulsed reverse current deposited nickel-tungsten were found to be similar but the average hardness of direct current deposited nickel-tungsten was slightly higher than that of pulsed reverse current deposited nickel-tungsten. This was attributed to the higher tungsten content (35 wt.%) in the direct current deposited nickel-tungsten coating compared to that (25 wt.%) in the pulsed reverse current deposited nickel-tungsten and is supported by our energy dispersive X-ray spectroscopy results.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48621421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Vigneshwaran, N. Padmavathi, G. Nirmala, A. Sowmiya
{"title":"An Intelligent Cooling System Based on Predictive Time Domain Algorithm with Thermoelectric Coolers for Wind Turbines","authors":"P. Vigneshwaran, N. Padmavathi, G. Nirmala, A. Sowmiya","doi":"10.14447/jnmes.v25i2.a08","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a08","url":null,"abstract":"Development of Power Electronics devices (PED) made renewable energy generation of power more feasible than that of traditional power plant generation. In India, Tamil Nadu the major source of renewable generation is come from Wind generation. Due to PED, heat generated is the Major issues in wind power generation, which consequence in terrible combustion accidents and disasters. Cooling system such as compressor based cooling scheme or two phases cooling is provided in addition to natural air cooling. The major disadvantages of the scheme are their volume, requirement of large power supplies and frequent chance to catch fire. Currently, using Thermo-electric coolers (TEC) called Peltier modules to provide cooling in wind power plant. Only after the system has reached massive temperature levels can it excavates the heat. The proposed method using predictive time domain algorithm the cooling process initiated in prepone manner. As soon as heat go up the system will detected and switched on cooling in predictive manner which can avoid the system to reach the maximum temperature. By using IoT, the system can monitor the temperature level and make use of predictive cooling technology over the surfaces without any delay time.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47778063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nano Additives in Cashew Nut Shell Liquid Biodiesel and Environment Emissions of Diesel Engine","authors":"Deepak Kumar, V. Chhibber, Ashutosh Kumar Singh","doi":"10.14447/jnmes.v25i2.a01","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a01","url":null,"abstract":"The developing countries are using non-edible oils for the production of biofuels, additives, or alternate fuels. The research article focused on the behavior study and analysis of cashew nut shell liquid (CNSL) biodiesel obtained by processing the cashew nut shell liquid. The work is carried out to derive the thermal-cracked (TC) -CNSL oil from Cardonal in the temperature range l50℃ to 400℃. The chemical functional groups are studied using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) techniques. The TC-CNSL blended fuel performance is compared with diesel and neat biodiesel (B-100). The physicochemical properties of diesel, CNSL, and TC-CNSL biodiesel are estimated based on American Society for Testing and Materials (ASTM) standards. The 50 parts per million (ppm) Cerium Oxide Nanoparticles are added with TC-CNSL-B25, TC-CNSL-B50, TC-CNSL-75, and TC-CNSL-BJOO and processed in a single stroke diesel engine working at constant speed 1500-rpm. The blended fuel is analyzed based on environmental emission parameters in the diesel engines. The carbon monoxide (CO), carbon dioxide (CO2) hydrocarbon (HC) emissions of B-100 are reduced by 40.5%, 60.9%, and 30.7% respectively in comparison to diesel, at full load. The nitrogen oxide (NOx) emissions are increased by 13.26 % in B-100 in comparison to diesel, at full load. The smoke density is also observed decreasing in B-100 in comparison to diesel.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47502665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving High-Temperature Cycle Stability and Rate Performance of LiNi0.82Co0.11Mn0.07O2 Cathode Materials Using Hydrogen Peroxide Solution Washing System","authors":"Seon-Jin Lee, Hyun-Ju Jang, J. Son","doi":"10.14447/jnmes.v25i2.a02","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a02","url":null,"abstract":"In this study, for the removal of residual lithium (Li2CO3,LiOH) from a nickel-rich cathode material surface, LiNi0.82Co0.11Mn0.07O2 cathode materials were washed with an aqueous solution of hydrogen peroxide (H2O2).H2O2 ( pH6.04), a weak acid, can easily decompose Li2CO3 and LiOH as an oxidizing agent. On titration of residual lithium, the amounts of LiOH and Li2CO3 are 390 and 605ppm,25 - and 47 -times lower, after H2O2 washing compared to 10,296 and 28,440ppm, respectively, in case of cathode materials before washing. On DSC thermal analysis, the peak temperature and calorific value of the cathode material washed with H2O2 were 245.5∘C and 602.0 J/g, respectively, whereas the bare case was 208.6∘C and 1,071 J/g, respectively. Therefore, H2O2-washed LiNi0.82Co0.11Mn0.07O2 cathode materials had higher capacity heat retention after 100 cycles at 55∘C(85.6% at 0.5C) than the bare LiNi0.82Co0.11Mn0.07O2 cathode materials (78.6% at 0.5C).","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49310008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Perumal, Sethuramachandran Thanikaikarasan, M. Saravannan, R. Kanimozhi, S. Sudharthini
{"title":"Influence of Halogens on the Growth Aspects of Allylthiourea Cadmium Complex Nonlinear Optical Single Crystals","authors":"R. Perumal, Sethuramachandran Thanikaikarasan, M. Saravannan, R. Kanimozhi, S. Sudharthini","doi":"10.14447/jnmes.v25i2.a04","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a04","url":null,"abstract":"Allylthiourea complex crystals is an organometallic complex, a new nonlinear optical materials with high second harmonic generation effect. Tri-allylthiourea cadmium chloride and Tri-allylthiourea cadmium bromide are the promising nonlinear optical crystals belonging to this family. Both the crystals have been grown from an aqueous solution by slow cooling technique. The solubility and growth optimization of the grown crystals in terms of pH were analyzed and the influence of the different halogen atoms on the properties of as grown single crystals was studied by conducting various characterization techniques. Powder X-ray diffraction studies revealed that both the crystals are trigonal crystal structure with R3C space group. The spectroscopic properties were investigated by recording the Fourier Transform Infra Red and UV-Visible-NIR spectroscopy. Spectrocopic study confirmed the coordination of metal and red shift of the grown crystal. Nonlinear behavior of the as grown crystals was identified by Kurtz powder technique. Thermal and electrical properties of the as grown crystals were also analyzed by thermogravimetric and dielectric studies. Influence of the halogens on the growth as well as the properties were studied.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47733458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Configuration and Techno-Economic Analysis of Hybrid Photovoltaic/PEM Fuel Cell Power System","authors":"H. Bahri, A. Harrag, Hegazy Rezk","doi":"10.14447/jnmes.v25i2.a05","DOIUrl":"https://doi.org/10.14447/jnmes.v25i2.a05","url":null,"abstract":"In this study, a renewable energy-based hybrid system was designed capable of meeting known electrical load requirements, as the system includes a combination of photovoltaic cells (PV), a fuel cell, batteries, an electrolyzer, and a hydrogen tank. This hybrid system supplies the cell tower located in the village of Ouanougha, country of Algeria with the annual electrical energy demand of 47 kWh/day. A Hybrid optimization model for electric renewable (HOMER) simulation software is utilized for modeling, optimize sizing, simulation as well as performing the techno-economic analysis of this hybrid system. HOMER software gives several optimum system configurations, which are compared among themselves for identifying the optimum system configuration. The comparison is based on the total net present cost (TNPC) and levelized cost of energy (LCOE). Other cost parameters can be provided such as initial capital cost, operation, and maintenance cost (O&M). The simulation result shows that, the proposed hybrid system has the lowest TNPC, LCOE and Initial capital, which are 64,384 $, 0.259 $/kWh and 35,850 $, respectively. On the other hand, it proved that the hybrid system is environmentally friendly and without producing any polluting gas. This paper also focuses on the operational strategy for feeding the load, as the results show that the hybrid system generally fulfills the requirements of the load.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48600066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}