{"title":"Front Matter: Volume 10932","authors":"","doi":"10.1117/12.2531983","DOIUrl":"https://doi.org/10.1117/12.2531983","url":null,"abstract":"","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132355920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Programmable NIRS: Smart factory solutions (Conference Presentation)","authors":"S. Christian, E. R. Deutsch, J. Huehnerhoff","doi":"10.1117/12.2512279","DOIUrl":"https://doi.org/10.1117/12.2512279","url":null,"abstract":"","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133031320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PLLA-infused citric acid-based bioresorbable vascular scaffolds 3D printed via microCLIP (Conference Presentation)","authors":"H. Ware, B. Akar, Cheng Sun, G. Ameer","doi":"10.1117/12.2514127","DOIUrl":"https://doi.org/10.1117/12.2514127","url":null,"abstract":"Recent development of high-resolution micro-Continuous Liquid Interface Production (microCLIP, continuous projection microstereolithography) process has enabled 3D printing of biomedical devices with 10 micron-scale precision. 3D bioresorbable vascular scaffolds (BVS) were printed using an antioxidant, photopolymerizable citric acid-based material (B-InkTM). Despite demonstrating BVS fabrication feasibility, challenges remained. According to literature, a vascular stent when placed in the body must be able to sustain a pressure loading between 10.67kPa and 13.34kPa of pressure loading. To be clinically relevant, struts for vascular scaffolds need to possess very small thickness, 100um or below. Specifically, to improve our material strength/stiffness of our 3D printed BVSs, a dissolved PLLA nanophase (10%, wt./vol in Tetrahydrofuran) and secondary temperature-sensitive initiators (V70, 1wt.%) were added to the photopolymer resin. Through temperature-induced phase separation and solvent exchange, fibrous networks were incorporated through the B-Ink 3D matrix. Secondary initiators allowed for further crosslinkage of the matrix material. Introduction of PLLA nanophase/secondary initiators greatly improved bulk stiffness and yielded BVSs with 100um strut thickness that could sustain the necessary biological radial pressure loadings. This technology and photopolymerizable material is a large step forward toward on-the-spot and on-demand fabrication of patient specific BVSs.","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121097128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-throughput additive manufacturing of thiol-based, oxygen-insensitive photoresins with digital micromirror devices (Conference Presentation)","authors":"W. Voit, Benjamin R. Lund, S. Kay, C. Lund","doi":"10.1117/12.2511496","DOIUrl":"https://doi.org/10.1117/12.2511496","url":null,"abstract":"","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124103927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Mills, Daniel J. Heath, J. Grant-Jacob, Yunhui Xie, Benita Scout Mackay, R. Eason
{"title":"Neural networks for predictive laser machining capabilities (Conference Presentation)","authors":"B. Mills, Daniel J. Heath, J. Grant-Jacob, Yunhui Xie, Benita Scout Mackay, R. Eason","doi":"10.1117/12.2507375","DOIUrl":"https://doi.org/10.1117/12.2507375","url":null,"abstract":"Predictive visualisation for laser-processing of materials can be challenging, as the nonlinear interaction of light and matter is complicated to model, particularly when scaling up from atom-level to bulk material. Here, we demonstrate a predictive visualisation approach that uses a pair of neural networks (NNs) that are trained using data obtained from laser machining using a digital micromirror device (DMD) acting as an intensity spatial light modulator. The DMD enables laser machining using many beam shapes, and hence can be used to produce significant amounts of training data for NNs. Here, the training data corresponds to hundreds of DMD patterns (i.e. beam shapes) and their associated images and 3D depth profiles. The trained NNs are able to generate a surface image and 3D depth profile, showing what the ablated surface would look like, for a wide range of ablating beam shapes. The predicted visualisations are remarkably effective and almost indistinguishable from real experimental data in appearance. Such a NN approach has considerable advantages over modelling techniques that start from first-principles (i.e. light-atom interaction), since zero understanding of the underlying physical processes is needed, as instead the NN learns directly via observation of labelled experimental data. We will show that the NN learns key optical properties such as diffraction, the nonlinear interaction of light and matter, and the statistical distribution of debris and burring of material, all with zero human assistance. This offers a new paradigm in predictive capabilities, which could be applied to almost any manufacturing process.","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132282232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Sturm, F. Soldevila, E. Tajahuerce, S. Gigan, H. D. Aguiar
{"title":"Development of a high-resolution high-sensitivity compressive Raman microscope (Conference Presentation)","authors":"B. Sturm, F. Soldevila, E. Tajahuerce, S. Gigan, H. D. Aguiar","doi":"10.1117/12.2508927","DOIUrl":"https://doi.org/10.1117/12.2508927","url":null,"abstract":"The high data bandwidth of Raman imaging precludes high-speed spectroscopic imaging. Conversely, emerging compressive sensing hyperspectroscopy techniques could, in principle, address this issue by using undersampling methodologies with computational reconstructions. However, compressive spectrometer layouts have prohibitive losses for low-light levels applications, such as in the spontaneous Raman imaging of dynamic biological specimens. These losses are due to the fact that high-sensitivity light detectors (photo-counters) have too small active area (typically 100 um) compared to the size of digital micromirror devices (DMD) (~10 mm) used in most compressive layouts. Inspired by pulse shaping techniques of ultrafast spectroscopy, we present a new programmable spectrometer layout with high-throughput and large spectral coupling bandwidths. Exploiting amplitude spectral modulation with DMD allows conventional and compressive Raman imaging and spectroscopy acquisitions with shot-noise-limited sensitivity. With this spectrometer, we demonstrate compressed hyperspectroscopy at faster speeds and at lower costs than traditional cameras used in Raman imaging applications. We showcase imaging of biological specimens at high spatial resolution (250 nm).","PeriodicalId":164467,"journal":{"name":"Emerging Digital Micromirror Device Based Systems and Applications XI","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121504386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}