Journal of Molecular Spectroscopy最新文献

筛选
英文 中文
Empirical rovibrational energy levels for carbon disulfide
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-03-01 DOI: 10.1016/j.jms.2025.111998
Tanvi Sattiraju, Jonathan Tennyson
{"title":"Empirical rovibrational energy levels for carbon disulfide","authors":"Tanvi Sattiraju,&nbsp;Jonathan Tennyson","doi":"10.1016/j.jms.2025.111998","DOIUrl":"10.1016/j.jms.2025.111998","url":null,"abstract":"<div><div>An analysis of the measured rovibrational transitions is carried out for the <span><math><msup><mrow></mrow><mrow><mn>12</mn></mrow></msup></math></span>C<span><math><msup><mrow></mrow><mrow><mn>32</mn></mrow></msup></math></span>S<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> isotopologue of carbon disulfide. Data from 21 sources is extracted and validated using a consistent set of standard linear molecule quantum numbers. A corrected list of 8714 CS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> transitions forms the input to a Measured Active Rotational–Vibrational Energy Levels (MARVEL) procedure, generating 4279 empirical rovibrational energy levels across 138 bands of <span><math><msup><mrow></mrow><mrow><mn>12</mn></mrow></msup></math></span>C<span><math><msup><mrow></mrow><mrow><mn>32</mn></mrow></msup></math></span>S<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Results are compared to the recent NASA Ames line list. While the agreement is generally good, issues are identified with the energy levels of some states, notably those with high values of the <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> bending quantum number.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"409 ","pages":"Article 111998"},"PeriodicalIF":1.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotational spectrum of trifluoroacetic acid: Extension of the measurements by chirped-pulse spectroscopy
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2025.111986
Greta Naso , Filippo Baroncelli , Luca Evangelisti , Assimo Maris , Sonia Melandri
{"title":"Rotational spectrum of trifluoroacetic acid: Extension of the measurements by chirped-pulse spectroscopy","authors":"Greta Naso ,&nbsp;Filippo Baroncelli ,&nbsp;Luca Evangelisti ,&nbsp;Assimo Maris ,&nbsp;Sonia Melandri","doi":"10.1016/j.jms.2025.111986","DOIUrl":"10.1016/j.jms.2025.111986","url":null,"abstract":"<div><div>The rotational spectrum of trifluoroacetic acid has been recorded at room temperature in the 18–26 GHz frequency range using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer. More than 180 new spectral lines have been identified and assigned to transitions within the vibrational ground state. A global fitting has been performed by incorporating spectroscopic data from previous studies, leading to the refinement of the molecular parameters. Two fitting models using Watson’s <span><math><mi>S</mi></math></span>-reduction and <span><math><mi>A</mi></math></span>-reduction are proposed, allowing the determination of <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> for the first model and <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>J</mi><mi>K</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>K</mi><mi>J</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> for the second one.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111986"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143134418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotational analyses of two transitions of WS near 13,100 cm−1, and further deperturbation analysis of the [15.30]1 – X 3Σ−0+ transition
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2025.111999
Kristin N. Bales , Dominik Kosican , Jack C. Harms , James J. O’Brien , Leah C. O’Brien
{"title":"Rotational analyses of two transitions of WS near 13,100 cm−1, and further deperturbation analysis of the [15.30]1 – X 3Σ−0+ transition","authors":"Kristin N. Bales ,&nbsp;Dominik Kosican ,&nbsp;Jack C. Harms ,&nbsp;James J. O’Brien ,&nbsp;Leah C. O’Brien","doi":"10.1016/j.jms.2025.111999","DOIUrl":"10.1016/j.jms.2025.111999","url":null,"abstract":"<div><div>Two transitions of tungsten sulfide (WS) near 13,100 cm<sup>−1</sup>, the (0,0) band of the [13.10]1 <strong>–</strong> <em>X</em> <sup>3</sup>Σ<sup>−</sup><sub>0+</sub> transition and the (0,0) band of the [15.30]1 <strong>–</strong> <em>X</em> <sup>3</sup>Σ<sup>−</sup><sub>1</sub> transition, have been recorded at high resolution using intracavity laser absorption spectroscopy with a Fourier-transform spectrometer used for detection (ILS-FTS). The WS molecules were produced in the plasma discharge formed by applying 0.70–0.80 A of a discharge current from a pulsed DC plasma generator to a tungsten-lined copper hollow cathode. The reaction took place in the presence of Ar (∼70 %), H<sub>2</sub> (∼30 %), and CS<sub>2</sub> (∼0.1 %) gases at a total pressure of approximately 2 torr. Lines for all four abundant isotopologues of WS, <sup>182</sup>W<sup>32</sup>S, <sup>183</sup>W<sup>32</sup>S, <sup>184</sup>W<sup>32</sup>S, and <sup>186</sup>W<sup>32</sup>S, were measured and a rotational analysis was performed using PGOPHER. A constrained parameters approach was used to maintain expected mass relationships among isotopologues. This analysis increases the number of observed rotational levels from J ∼ 30 to J ∼ 100 for both excited states, allowing an increase in precision of spectroscopic constants. The new analysis of the [15.30]1 <strong>–</strong> <em>X</em> <sup>3</sup>Σ<sup>−</sup>(1) transition enabled the reduced uncertainty in the previously determined value for the splitting of the 0+ and 1 Ω-components of the <em>X</em> <sup>3</sup>Σ<sup>−</sup> ground state. Also presented in this work is an expansion upon our earlier deperturbation analysis involving the [15.30]1 state to include the v′ = 2 vibrational level, which is perturbed by the v′ = 4 vibrational level of the [14.26]0<sup>+</sup> state.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111999"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143201823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-states model for calculating the X-X rovibrational transition intensities in hydroxyl radical (Erratum)
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2025.111996
V.G. Ushakov, A.Yu. Ermilov, E.S. Medvedev
{"title":"Three-states model for calculating the X-X rovibrational transition intensities in hydroxyl radical (Erratum)","authors":"V.G. Ushakov,&nbsp;A.Yu. Ermilov,&nbsp;E.S. Medvedev","doi":"10.1016/j.jms.2025.111996","DOIUrl":"10.1016/j.jms.2025.111996","url":null,"abstract":"","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111996"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143551152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward less ambiguous vibrational spectroscopic notations for hydrogen-bonded water and methanol clusters
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2025.111997
Lukas Meinschad , Kemal Oenen , Dennis F. Dinu , Klaus R. Liedl
{"title":"Toward less ambiguous vibrational spectroscopic notations for hydrogen-bonded water and methanol clusters","authors":"Lukas Meinschad ,&nbsp;Kemal Oenen ,&nbsp;Dennis F. Dinu ,&nbsp;Klaus R. Liedl","doi":"10.1016/j.jms.2025.111997","DOIUrl":"10.1016/j.jms.2025.111997","url":null,"abstract":"<div><div>The hydrogen bond (HB), a non-covalent interaction, leads to diverse structural motifs that dictate the physical properties of materials or biochemical processes. Infrared spectroscopy allows straightforward access to such structural motifs from laboratory experiments. These spectra indirectly reveal HBs through vibrational frequency shifts in a molecular cluster compared to the single molecules. Characterizing these shifts with descriptive vibrational notations is challenging due to the delocalized nature of intermolecular vibrations. Typically, vibrations of clusters are represented in terms of the respective individual molecules. This approach is somewhat debatable, mainly when notations are based on experience or visual interpretation of theoretical models, most notably the normal mode framework. While normal modes are straightforward to obtain, they often provide insufficient descriptions of delocalized vibrations. Here, the decomposition of normal modes into contributions from <em>internal coordinates</em> allows for both an illustrative framework and a quantitative basis for vibrational notations. In the present work, we apply such a decomposition scheme to various HB systems, assessing the plausibility of notations used in IR spectroscopy of molecular clusters. For water, methanol, and clusters thereof, we demonstrate the limitations of conventional notations and how normal mode decomposition schemes can provide a reasonable workaround.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111997"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the rotational spectrum of cyclopentadiene towards higher frequencies and vibrational states
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2024.111967
Luis Bonah , Benedikt Helmstaedter , Jean-Claude Guillemin , Stephan Schlemmer , Sven Thorwirth
{"title":"Extending the rotational spectrum of cyclopentadiene towards higher frequencies and vibrational states","authors":"Luis Bonah ,&nbsp;Benedikt Helmstaedter ,&nbsp;Jean-Claude Guillemin ,&nbsp;Stephan Schlemmer ,&nbsp;Sven Thorwirth","doi":"10.1016/j.jms.2024.111967","DOIUrl":"10.1016/j.jms.2024.111967","url":null,"abstract":"<div><div>Cyclopentadiene ( <figure><img></figure> ) is a cyclic pure hydrocarbon that was already detected astronomically towards the prototypical dark cloud TMC-1 (Cernicharo et al., 2021). However, accurate predictions of its rotational spectrum are still limited to the microwave region and narrow quantum number ranges. In the present study, the pure rotational spectrum of cyclopentadiene was measured in the frequency ranges 170–250<!--> <!-->GHz and 340–510<!--> <!-->GHz to improve the number of vibrational ground state assignments by more than a factor of 20, resulting in more accurate rotational parameters and the determination of higher-order centrifugal distortion parameters. Additionally, vibrational satellite spectra of cyclopentadiene in its eight energetically lowest vibrationally excited states were analyzed for the first time. Coriolis interactions between selected vibrational states were identified and treated successfully in combined fits. Previous microwave work on the three singly <figure><img></figure> substituted isotopologues was extended significantly also covering frequency ranges up to 250<!--> <!-->GHz. The new data sets permit reliable frequency predictions for the isotopologues and vibrational satellite spectra far into the sub-mm-wave range. Finally, the experimental rotational constants of all available isotopologues and calculated zero-point vibrational contributions to the rotational constants were used to derive a semi-experimental equilibrium structure of this fundamental ring molecule.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111967"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-02-01 DOI: 10.1016/j.jms.2025.111985
Isiah M. McMurray, Joseph R. Nettles, Aaron W. Uzelmeier, Jeremy A. Swartz, Josh J. Newby
{"title":"An analysis of the N-methyl-2-pyrrolidone: water complex using computational and matrix isolation FTIR methods","authors":"Isiah M. McMurray,&nbsp;Joseph R. Nettles,&nbsp;Aaron W. Uzelmeier,&nbsp;Jeremy A. Swartz,&nbsp;Josh J. Newby","doi":"10.1016/j.jms.2025.111985","DOIUrl":"10.1016/j.jms.2025.111985","url":null,"abstract":"<div><div>The weakly bound complexes of <em>N</em>-methyl-2-pyrrolidone (NMP) and water have been analyzed using a combination of computational methods and matrix isolation FTIR spectroscopy. The computational analysis utilized density functional and perturbation theory methods to determine the lowest energy geometries and vibrational frequencies of NMP: H<sub>2</sub>O. This analysis yielded four unique structures that could be differentiated by their preferred intermolecular interaction. Two structures formed via relatively strong OH⋯O hydrogen bonds, one structure was stabilized via OH⋯N interactions, and the fourth structure was observed to interact through relatively weak CH⋯O features. The interaction motifs were verified using atoms in molecules analysis and the noncovalent interaction index method. Spectra of NMP with H<sub>2</sub>O and its isotopologues showed clear evidence of two unique structures in the cryogenic nitrogen matrix. Both of these structures formed through OH⋯O interactions from the water to the carbonyl oxygen of NMP. This structural assignment was supported by the calculated vibrational shifts seen in NMP: H<sub>2</sub>O. A detailed analysis and discussion of this assignment is provided.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"408 ","pages":"Article 111985"},"PeriodicalIF":1.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotational spectroscopy of the benzofuran–water complex: Conformations and preferred noncovalent interactions
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-01-01 DOI: 10.1016/j.jms.2024.111979
Haiying Huang, Xiaolong Li, Gang Feng
{"title":"Rotational spectroscopy of the benzofuran–water complex: Conformations and preferred noncovalent interactions","authors":"Haiying Huang,&nbsp;Xiaolong Li,&nbsp;Gang Feng","doi":"10.1016/j.jms.2024.111979","DOIUrl":"10.1016/j.jms.2024.111979","url":null,"abstract":"<div><div>We investigated the non-covalent interactions occurring between benzofuran and water. The weakly-bound complex was produced using a supersonic jet expansion and was subsequently characterized utilizing high-resolution Fourier transform microwave spectroscopy. Through the analysis of the rotational spectrum, we were able to confirm the detection of two distinct conformations within the complex. The most stable conformation demonstrates a structure that is almost coplanar. This structure involves one hydrogen atom from a water molecule interacting with the oxygen atom of benzofuran, thus forming an O<sub>w</sub>–H<sub>w</sub>···O hydrogen bond. Concurrently, the oxygen atom serves as a proton acceptor, forming an O<sub>w</sub>···H<img>C hydrogen bond with one hydrogen atom of the phenyl ring. The secondary conformation positions the two O<img>H bonds such that they are oriented towards the face of benzofuran, resulting in the formation of two O<sub>w</sub>–H<sub>w</sub>···π hydrogen bonds. The non-covalent bonding topology of the first conformation bears resemblance to the corresponding furan-water complex, while the second conformation aligns with the benzofuran-hydrogen sulfide complex. The strength and the nature of these hydrogen bonding interactions is delineated by the application of natural bond orbital theory, energy decomposition, and electronic density analysis methodologies.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111979"},"PeriodicalIF":1.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of O2 and O3 absorption cross-sections in the 180–270 nm by controlling the conversion of O2 to O3 in the linear-absorption region
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-01-01 DOI: 10.1016/j.jms.2024.111984
Shuo Zhao , Jie Gao , Yongqi Wu , Rui Zhu , Mu Li , Wanyi Qin , Xijun Wu , Yungang Zhang
{"title":"Measurement of O2 and O3 absorption cross-sections in the 180–270 nm by controlling the conversion of O2 to O3 in the linear-absorption region","authors":"Shuo Zhao ,&nbsp;Jie Gao ,&nbsp;Yongqi Wu ,&nbsp;Rui Zhu ,&nbsp;Mu Li ,&nbsp;Wanyi Qin ,&nbsp;Xijun Wu ,&nbsp;Yungang Zhang","doi":"10.1016/j.jms.2024.111984","DOIUrl":"10.1016/j.jms.2024.111984","url":null,"abstract":"<div><div>Oxygen (O<sub>2</sub>) and ozone (O<sub>3</sub>) are of crucial importance to human health and environmental sustainability. Concentrations of O<sub>2</sub> and O<sub>3</sub> can be measured by UV absorption spectroscopy, in which the absorption cross-section (ACS) is a very critical physical parameter for calculating concentrations. However, the existing ACS of O<sub>2</sub> and O<sub>3</sub> are biased because the conversion of O<sub>2</sub> to O<sub>3</sub> and nonlinear effects in absorption are ignored in the measurement of ACS. In this study, the ACS for O<sub>2</sub> and O<sub>3</sub> are obtained by considering the conversion of O<sub>2</sub> to O<sub>3</sub> and the nonlinear effects. First, the conversion of O<sub>2</sub> to O<sub>3</sub> is inhibited by controlling gas flow rate and light intensity in the measurement of O<sub>2</sub> and O<sub>3</sub> ACS. Then the concentration of O<sub>3</sub> is indirectly calculated by controlling conversion of O<sub>2</sub> to O<sub>3</sub> during the measurement of ACS of O<sub>3</sub>. Next, the linear-absorption regions for O<sub>2</sub> and O<sub>3</sub> are determined by constructing the relationship between absorption intensities and concentrations to eliminate the influence of nonlinear effect. The maximum ACS for oxygen and ozone are <span><math><mrow><mn>7.84</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>20</mn></mrow></msup></mrow></math></span> cm<sup>2</sup>/molecule (<span><math><mrow><mi>λ</mi></mrow></math></span> = 180.51 nm) and <span><math><mrow><mn>1.32</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>17</mn></mrow></msup></mrow></math></span> cm<sup>2</sup>/molecule (<span><math><mrow><mi>λ</mi></mrow></math></span> = 255.39 nm) by controlling conversion of O<sub>2</sub> to O<sub>3</sub> in the linear-absorption region, respectively.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111984"},"PeriodicalIF":1.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the laboratory rotational spectrum of linear C3H+
IF 1.4 4区 物理与天体物理
Journal of Molecular Spectroscopy Pub Date : 2025-01-01 DOI: 10.1016/j.jms.2024.111978
Carlo Baddeliyanage , Joshua Karner , Sruthi Purushu Melath , Weslley G.D.P. Silva , Stephan Schlemmer , Oskar Asvany
{"title":"Extending the laboratory rotational spectrum of linear C3H+","authors":"Carlo Baddeliyanage ,&nbsp;Joshua Karner ,&nbsp;Sruthi Purushu Melath ,&nbsp;Weslley G.D.P. Silva ,&nbsp;Stephan Schlemmer ,&nbsp;Oskar Asvany","doi":"10.1016/j.jms.2024.111978","DOIUrl":"10.1016/j.jms.2024.111978","url":null,"abstract":"<div><div>The rotational spectrum of linear C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> has been revisited in the millimeter-wave region using a cryogenic ion trap apparatus employing a double-resonance scheme based on leak-out action spectroscopy (LOS). Eight rotational transitions (<span><math><mrow><msup><mrow><mi>J</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>←</mo><msup><mrow><mi>J</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>=</mo><mn>4</mn><mo>←</mo><mn>3</mn></mrow></math></span> up to <span><math><mrow><msup><mrow><mi>J</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>←</mo><msup><mrow><mi>J</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>=</mo><mn>11</mn><mo>←</mo><mn>10</mn></mrow></math></span>) have been measured in the 85-250<span><math><mspace></mspace></math></span>GHz frequency range. With the laboratory measurements reported here, improved values for the ground-state spectroscopic constants of C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> have been obtained.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111978"},"PeriodicalIF":1.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信