Gijs Bellaard, Daan L. J. Bon, Gautam Pai, Bart M. N. Smets, Remco Duits
{"title":"Analysis of (sub-)Riemannian PDE-G-CNNs","authors":"Gijs Bellaard, Daan L. J. Bon, Gautam Pai, Bart M. N. Smets, Remco Duits","doi":"10.1007/s10851-023-01147-w","DOIUrl":"https://doi.org/10.1007/s10851-023-01147-w","url":null,"abstract":"Abstract Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning. Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs) generalizes G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously (1) reduce network complexity, (2) increase classification performance, and (3) provide geometric interpretability. Their implementations primarily consist of linear and morphological convolutions with kernels. In this paper, we show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets. Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels are related to association fields from neurogeometry.","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136243274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Appreciation to Journal of Mathematical Imaging and Vision Reviewers","authors":"","doi":"10.1007/s10851-023-01141-2","DOIUrl":"https://doi.org/10.1007/s10851-023-01141-2","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52392130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Generalisation of Flat Morphology, II: Main Properties, Duality and Hybrid Operators","authors":"C. Ronse","doi":"10.1007/s10851-023-01145-y","DOIUrl":"https://doi.org/10.1007/s10851-023-01145-y","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47596364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Physically Admissible Stokes Vector Reconstruction in Linear Polarimetric Imaging","authors":"Carole Le Guyader, Samia Ainouz, S. Canu","doi":"10.1007/s10851-022-01139-2","DOIUrl":"https://doi.org/10.1007/s10851-022-01139-2","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45194425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Properties of Morphological Dilation in Max-Plus and Plus-Prod Algebra in Connection with the Fourier Transformation","authors":"Marvin Kahra, M. Breuß","doi":"10.1007/s10851-022-01138-3","DOIUrl":"https://doi.org/10.1007/s10851-022-01138-3","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48215838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Fadili, A. Moataz, Loïc Simon, J. Rabin, Y. Quéau
{"title":"Guest Editorial JMIV Special Issue SSVM’21","authors":"M. Fadili, A. Moataz, Loïc Simon, J. Rabin, Y. Quéau","doi":"10.1007/s10851-023-01140-3","DOIUrl":"https://doi.org/10.1007/s10851-023-01140-3","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44158883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, Joachim Weickert
{"title":"Connections Between Numerical Algorithms for PDEs and Neural Networks.","authors":"Tobias Alt, Karl Schrader, Matthias Augustin, Pascal Peter, Joachim Weickert","doi":"10.1007/s10851-022-01106-x","DOIUrl":"10.1007/s10851-022-01106-x","url":null,"abstract":"<p><p>We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural architectures. Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks. Besides structural insights, we provide concrete examples and experimental evaluations of the resulting architectures. Using the example of generalised nonlinear diffusion in 1D, we consider explicit schemes, acceleration strategies thereof, implicit schemes, and multigrid approaches. We connect these concepts to residual networks, recurrent neural networks, and U-net architectures. Our findings inspire a symmetric residual network design with provable stability guarantees and justify the effectiveness of skip connections in neural networks from a numerical perspective. Moreover, we present U-net architectures that implement multigrid techniques for learning efficient solutions of partial differential equation models, and motivate uncommon design choices such as trainable nonmonotone activation functions. Experimental evaluations show that the proposed architectures save half of the trainable parameters and can thus outperform standard ones with the same model complexity. Our considerations serve as a basis for explaining the success of popular neural architectures and provide a blueprint for developing new mathematically well-founded neural building blocks.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiyuan Liu, Jörn Schulz, Mohsen Taheri, M. Styner, J. Damon, S. Pizer, J. S. Marron
{"title":"Analysis of Joint Shape Variation from Multi-Object Complexes","authors":"Zhiyuan Liu, Jörn Schulz, Mohsen Taheri, M. Styner, J. Damon, S. Pizer, J. S. Marron","doi":"10.1007/s10851-022-01136-5","DOIUrl":"https://doi.org/10.1007/s10851-022-01136-5","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47270187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Binary Patterns of Segments of a Binary Object for Shape Analysis","authors":"Ratnesh Kumar, Kalyani Mali","doi":"10.1007/s10851-022-01130-x","DOIUrl":"https://doi.org/10.1007/s10851-022-01130-x","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47978621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a Variational Problem with a Nonstandard Growth Functional and Its Applications to Image Processing","authors":"C. D'apice, P. Kogut, O. Kupenko, R. Manzo","doi":"10.1007/s10851-022-01131-w","DOIUrl":"https://doi.org/10.1007/s10851-022-01131-w","url":null,"abstract":"","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49075382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}