{"title":"Adhesive Force of Single Particle","authors":"K. Gotoh, N. Ishida, S. Matsusaka","doi":"10.1201/b22268-16","DOIUrl":"https://doi.org/10.1201/b22268-16","url":null,"abstract":"","PeriodicalId":159611,"journal":{"name":"Powder Technology Handbook","volume":"268 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134050860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluidity of Powder","authors":"T. Yokoyama","doi":"10.1201/9781420044119.ch3.10","DOIUrl":"https://doi.org/10.1201/9781420044119.ch3.10","url":null,"abstract":"The fluidity of powder is defined intuitively as the ease of flow and relates to the change of mutual position of individual particles forming the powder bed. The fluidity of powder is strongly related to physical properties such as frictional force and cohesive force of the particles. The dynamic behavior of powder seems to be determined basically by interparticle forces and packing structure. Powder flow in various industrial processes takes place in different ways that can hardly be described in a universal form. Table 10.1 classifies the type of powder flow from the practical viewpoint.1 Based on the source of energy exerted on the particles, powder flow is classified as (1) gravitational flow, (2) mechanically forced flow, (3) vibration flow, (4) compression flow, and (5) fluidized flow, which appear simultaneously in actual processes in most cases.","PeriodicalId":159611,"journal":{"name":"Powder Technology Handbook","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123800088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risks of Nanoparticles","authors":"T. Myojo, H. Kamiya","doi":"10.1201/b22268-76","DOIUrl":"https://doi.org/10.1201/b22268-76","url":null,"abstract":"","PeriodicalId":159611,"journal":{"name":"Powder Technology Handbook","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127768059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}