Day 3 Wed, May 24, 2023最新文献

筛选
英文 中文
A Novel Approach to Determining Carrying Capacity Index Through Incorporation of Hole Size and Pipe Rotation 一种结合孔尺寸和管道旋转确定承载力指数的新方法
Day 3 Wed, May 24, 2023 Pub Date : 2023-05-15 DOI: 10.2118/212985-ms
David G. Rathgeber, Erick Johnson, Peter A. Lucon, Ryan P. Anderson, B. Todd, J. Downey, Lee Richards
{"title":"A Novel Approach to Determining Carrying Capacity Index Through Incorporation of Hole Size and Pipe Rotation","authors":"David G. Rathgeber, Erick Johnson, Peter A. Lucon, Ryan P. Anderson, B. Todd, J. Downey, Lee Richards","doi":"10.2118/212985-ms","DOIUrl":"https://doi.org/10.2118/212985-ms","url":null,"abstract":"\u0000 Current API RP13D guidelines outline 3 methods for determining hole-cleaning efficiency based on wellbore angle. Method 1, used in low-angle wellbores (<30°) compares cuttings slip velocity with annular velocity to determine a transport ratio and cuttings concentration. Method 2, also used for low-angle wellbores (<30°) derives a carrying capacity index (CCI) based on bulk annular velocity, fluid density and power-law rheology. Method 3, used in high-angle wellbores (<30°) derives a transport index (TI) based on fluid rheology, density, and flow rate. TI is then plotted on an empirically derived chart (Luo et al., 1992, 1994) to determine maximum allowable rate of penetration (ROP) that should ensure efficient hole cleaning.\u0000 Although these methods are considered recommended practices by API, Method 3 (TI) is based on an outdated study (Luo et al., 1992) with limited scope (one flow loop, one field test). Additionally, this method neglects the importance of drill pipe rotation and pipe eccentricity in cuttings transport efficiency, which has been proven to be a factor in other studies (Akhshik et al., 2015; Sanchez et al., 1997b).\u0000 This paper highlights the shortcomings of current API standards and identifies what effects contributing factors such as pipe eccentricity and drill pipe rotation rates may have on cuttings transport efficiency. Further, this paper discusses the impact pipe-to-hole area ratio and wellbore flow area have on the effects of drill pipe rotation and flow channeling.\u0000 Five horizontal wellbores were modeled using Siemens Star CCM+ Computational Fluid Dynamics (CFD) software, with bottom-eccentric 4 ½″ drill pipe placement, in annular diameters of 6¾″, 7 ⅞″, 8 ⅜″ 8 ½″ and 8 ⅝″. Additionally, one bottom-eccentric 5″ drill pipe in an 8 ¾\" wellbore was modeled to compare identical pipe-to-hole area ratios with different flow areas. Simulations were run with drill pipe rotation speeds increasing from 0 to 180 RPM, in 30 RPM increments. In order to determine the impact fluid rheology has on flow channel development, both medium density oil-based muds and light density water-based muds were modeled and compared. Bulk annular flow velocity was set to 100 ft/min, to maximize the observable effects of drill pipe rotation. Bulk average velocity was calculated from cross sectional area, determining both annular velocity (velocity parallel to wellbore) and absolute velocity (fluid velocity magnitude regardless of direction). The resultant velocity profiles were used as the annular velocity component in API CCI and TI calculations and compared to bulk annular velocity.\u0000 In addition to observing fluid velocity for CCI and TI calculations, changes in effective viscosity from the onset of pipe rotation was also analyzed to determine changes in wellbore parameters that may affect cuttings transport.","PeriodicalId":158776,"journal":{"name":"Day 3 Wed, May 24, 2023","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122683805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信