Data-Centric Engineering最新文献

筛选
英文 中文
Advancing digital healthcare engineering for aging ships and offshore structures: an in-depth review and feasibility analysis 推进老化船舶和近海结构的数字化医疗保健工程:深入审查和可行性分析
Data-Centric Engineering Pub Date : 2024-06-03 DOI: 10.1017/dce.2024.14
Abdulaziz Sindi, H. Kim, Young Jun Yang, Giles Thomas, J. Paik
{"title":"Advancing digital healthcare engineering for aging ships and offshore structures: an in-depth review and feasibility analysis","authors":"Abdulaziz Sindi, H. Kim, Young Jun Yang, Giles Thomas, J. Paik","doi":"10.1017/dce.2024.14","DOIUrl":"https://doi.org/10.1017/dce.2024.14","url":null,"abstract":"Abstract Aging ships and offshore structures face harsh environmental and operational conditions in remote areas, leading to age-related damages such as corrosion wastage, fatigue cracking, and mechanical denting. These deteriorations, if left unattended, can escalate into catastrophic failures, causing casualties, property damage, and marine pollution. Hence, ensuring the safety and integrity of aging ships and offshore structures is paramount and achievable through innovative healthcare schemes. One such paradigm, digital healthcare engineering (DHE), initially introduced by the final coauthor, aims at providing lifetime healthcare for engineered structures, infrastructure, and individuals (e.g., seafarers) by harnessing advancements in digitalization and communication technologies. The DHE framework comprises five interconnected modules: on-site health parameter monitoring, data transmission to analytics centers, data analytics, simulation and visualization via digital twins, artificial intelligence-driven diagnosis and remedial planning using machine and deep learning, and predictive health condition analysis for future maintenance. This article surveys recent technological advancements pertinent to each DHE module, with a focus on its application to aging ships and offshore structures. The primary objectives include identifying cost-effective and accurate techniques to establish a DHE system for lifetime healthcare of aging ships and offshore structures—a project currently in progress by the authors.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"104 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-informed artificial intelligence models for the seismic response prediction of rocking structures 用于摇晃结构地震响应预测的物理信息人工智能模型
Data-Centric Engineering Pub Date : 2024-01-10 DOI: 10.1017/dce.2023.26
Shirley Shen, C. Málaga‐Chuquitaype
{"title":"Physics-informed artificial intelligence models for the seismic response prediction of rocking structures","authors":"Shirley Shen, C. Málaga‐Chuquitaype","doi":"10.1017/dce.2023.26","DOIUrl":"https://doi.org/10.1017/dce.2023.26","url":null,"abstract":"Abstract The seismic response of a wide variety of structures, from small but irreplaceable museum exhibits to large bridge systems, is characterized by rocking. In addition, rocking motion is increasingly being used as a seismic protective strategy to limit the amount of seismic actions (moments) developed at the base of structures. However, rocking is a highly nonlinear phenomenon governed by non-smooth dynamic phases that make its prediction difficult. This study presents an alternative approach to rocking estimation based on a physics-informed convolutional neural network (PICNN). By training a group of PICNNs using limited datasets obtained from numerical simulations and encoding the known physics into the PICNNs, important predictive benefits are obtained relieving difficulties associated with over-fitting and minimizing the requirement for a large training database. Two models are created depending on the validation of the deep PICNN: the first model assumes that state variables including rotations and angular velocities are available, while the second model is useful when only acceleration measurements are known. The analysis is initiated by implementing K-means clustering. This is followed by a detailed statistical assessment and a comparative analysis of the response-histories of a rocking block. It is observed that the deep PICNN is capable of effectively estimating the seismic rocking response history when the rigid block does not overturn.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
dCNN/dCAM: anomaly precursors discovery in multivariate time series with deep convolutional neural networks dCNN/dCAM:利用深度卷积神经网络发现多元时间序列中的异常前兆
Data-Centric Engineering Pub Date : 2023-12-13 DOI: 10.1017/dce.2023.25
Paul Boniol, Mohammed Meftah, Emmanuel Remy, Bruno Didier, Themis Palpanas
{"title":"dCNN/dCAM: anomaly precursors discovery in multivariate time series with deep convolutional neural networks","authors":"Paul Boniol, Mohammed Meftah, Emmanuel Remy, Bruno Didier, Themis Palpanas","doi":"10.1017/dce.2023.25","DOIUrl":"https://doi.org/10.1017/dce.2023.25","url":null,"abstract":"Abstract Detection of defects and identification of symptoms in monitoring industrial systems is a widely studied problem with applications in a wide range of domains. Most of the monitored information extracted from systems corresponds to data series (or time series), where the evolution of values through one or multiple dimensions directly illustrates its health state. Thus, an automatic anomaly detection method in data series becomes crucial. In this article, we propose a novel method based on a convolutional neural network to detect precursors of anomalies in multivariate data series. Our contribution is twofold: We first describe a new convolutional architecture dedicated to multivariate data series classification; We then propose a novel method that returns dCAM, a dimension-wise Class Activation Map specifically designed for multivariate time series that can be used to identify precursors when used for classifying normal and abnormal data series. Experiments with several synthetic datasets demonstrate that dCAM is more accurate than previous classification approaches and a viable solution for discriminant feature discovery and classification explanation in multivariate time series. We then experimentally evaluate our approach on a real and challenging use case dedicated to identifying vibration precursors on pumps in nuclear power plants.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"51 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shaping the future of tunneling with data and emerging technologies 用数据和新兴技术塑造隧道技术的未来
Data-Centric Engineering Pub Date : 2023-11-29 DOI: 10.1017/dce.2023.24
Dayu Apoji, Brian Sheil, Kenichi Soga
{"title":"Shaping the future of tunneling with data and emerging technologies","authors":"Dayu Apoji, Brian Sheil, Kenichi Soga","doi":"10.1017/dce.2023.24","DOIUrl":"https://doi.org/10.1017/dce.2023.24","url":null,"abstract":"Abstract The increase in global population and urbanization is presenting significant challenges to society: space is becoming increasingly scarce, demand is exceeding capacity for deteriorating infrastructure, transportation is fraught with congestion, and environmental impacts are accelerating. Underground space, and particularly tunnels, has a key role to play in tackling these challenges. However, the cost, risk, uncertainty, and complexity of the tunneling process have impeded its growth. In this paper, we envision several technological advancements that can potentially innovate and transform the mechanized tunneling industry, including artificial intelligence (AI), autonomous, and bio-inspired systems. The proliferation of AI may assist human engineers and operators in making informed decisions systematically and quantitatively based on massive real-time data during tunneling. Autonomous tunneling systems may enable precise and predictable tunneling operations with minimal human intervention and facilitate the construction of massive and large-scale underground infrastructure projects that were previously challenging or unfeasible using conventional methods. Bio-inspired systems may provide valuable references and strategies for more efficient tunneling design and construction concepts. While these technological advancements can offer great promise, they also face considerable challenges, such as improving accessibility to and shareability of tunneling data, developing robust, reliable, and explainable machine learning systems, as well as scaling the mechanics and ensuring the applicability of bio-inspired systems from the prototype level to real-world applications. Addressing these challenges is imperative to ensure the successful implementation of these innovations for future tunneling.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"317 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139210733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Content-based image retrieval for industrial material images with deep learning and encoded physical properties 基于内容的工业材料图像检索,具有深度学习和编码物理特性
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.16
Myung Seok Shim, Christopher Thiele, Jeremy Vila, Nishank Saxena, Detlef Hohl
{"title":"Content-based image retrieval for industrial material images with deep learning and encoded physical properties","authors":"Myung Seok Shim, Christopher Thiele, Jeremy Vila, Nishank Saxena, Detlef Hohl","doi":"10.1017/dce.2023.16","DOIUrl":"https://doi.org/10.1017/dce.2023.16","url":null,"abstract":"Abstract Industrial materials images are an important application domain for content-based image retrieval. Users need to quickly search databases for images that exhibit similar appearance, properties, and/or features to reduce analysis turnaround time and cost. The images in this study are 2D images of millimeter-scale rock samples acquired at micrometer resolution with light microscopy or extracted from 3D micro-CT scans. Labeled rock images are expensive and time-consuming to acquire and thus are typically only available in the tens of thousands. Training a high-capacity deep learning (DL) model from scratch is therefore not practicable due to data paucity. To overcome this “few-shot learning” challenge, we propose leveraging pretrained common DL models in conjunction with transfer learning. The “similarity” of industrial materials images is subjective and assessed by human experts based on both visual appearance and physical qualities. We have emulated this human-driven assessment process via a physics-informed neural network including metadata and physical measurements in the loss function. We present a novel DL architecture that combines Siamese neural networks with a loss function that integrates classification and regression terms. The networks are trained with both image and metadata similarity (classification), and with metadata prediction (regression). For efficient inference, we use a highly compressed image feature representation, computed offline once, to search the database for images similar to a query image. Numerical experiments demonstrate superior retrieval performance of our new architecture compared with other DL and custom-feature-based approaches.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"281 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135556901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted modeling of capillary-driven droplet dynamics 人工智能辅助毛细管驱动液滴动力学建模
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.19
Andreas D. Demou, Nikos Savva
{"title":"AI-assisted modeling of capillary-driven droplet dynamics","authors":"Andreas D. Demou, Nikos Savva","doi":"10.1017/dce.2023.19","DOIUrl":"https://doi.org/10.1017/dce.2023.19","url":null,"abstract":"Abstract In this study, we present and assess data-driven approaches for modeling contact line dynamics, using droplet transport on chemically heterogeneous surfaces as a model system. Ground-truth data for training and validation are generated based on long-wave models that are applicable for slow droplet motion with small contact angles, which are known to accurately reproduce the dynamics with minimal computing resources compared to high-fidelity direct numerical simulations. The data-driven models are based on the Fourier neural operator (FNO) and are developed following two different approaches. The first deploys the data-driven method as an iterative neural network architecture, which predicts the future state of the contact line based on a number of previous states. The second approach corrects the time derivative of the contact line by augmenting its low-order asymptotic approximation with a data-driven counterpart, evolving the resulting system using standard time integration methods. The performance of each approach is evaluated in terms of accuracy and generalizability, concluding that the latter approach, although not originally explored within the original contribution on the FNO, outperforms the former.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135211320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian system identification for structures considering spatial and temporal correlation 考虑时空相关性的结构贝叶斯系统辨识
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.18
Ioannis Koune, Árpád Rózsás, Arthur Slobbe, Alice Cicirello
{"title":"Bayesian system identification for structures considering spatial and temporal correlation","authors":"Ioannis Koune, Árpád Rózsás, Arthur Slobbe, Alice Cicirello","doi":"10.1017/dce.2023.18","DOIUrl":"https://doi.org/10.1017/dce.2023.18","url":null,"abstract":"Abstract The decreasing cost and improved sensor and monitoring system technology (e.g., fiber optics and strain gauges) have led to more measurements in close proximity to each other. When using such spatially dense measurement data in Bayesian system identification strategies, the correlation in the model prediction error can become significant. The widely adopted assumption of uncorrelated Gaussian error may lead to inaccurate parameter estimation and overconfident predictions, which may lead to suboptimal decisions. This article addresses the challenges of performing Bayesian system identification for structures when large datasets are used, considering both spatial and temporal dependencies in the model uncertainty. We present an approach to efficiently evaluate the log-likelihood function, and we utilize nested sampling to compute the evidence for Bayesian model selection. The approach is first demonstrated on a synthetic case and then applied to a (measured) real-world steel bridge. The results show that the assumption of dependence in the model prediction uncertainties is decisively supported by the data. The proposed developments enable the use of large datasets and accounting for the dependency when performing Bayesian system identification, even when a relatively large number of uncertain parameters is inferred.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135105417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of global sensitivity analysis methods for computational structural mechanics problems 计算结构力学问题全局灵敏度分析方法的评价
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.23
Cody R. Crusenberry, Adam J. Sobey, Stephanie C. TerMaath
{"title":"Evaluation of global sensitivity analysis methods for computational structural mechanics problems","authors":"Cody R. Crusenberry, Adam J. Sobey, Stephanie C. TerMaath","doi":"10.1017/dce.2023.23","DOIUrl":"https://doi.org/10.1017/dce.2023.23","url":null,"abstract":"Abstract The curse of dimensionality confounds the comprehensive evaluation of computational structural mechanics problems. Adequately capturing complex material behavior and interacting physics phenomenon in models can lead to long run times and memory requirements resulting in the need for substantial computational resources to analyze one scenario for a single set of input parameters. The computational requirements are then compounded when considering the number and range of input parameters spanning material properties, loading, boundary conditions, and model geometry that must be evaluated to characterize behavior, identify dominant parameters, perform uncertainty quantification, and optimize performance. To reduce model dimensionality, global sensitivity analysis (GSA) enables the identification of dominant input parameters for a specific structural performance output. However, many distinct types of GSA methods are available, presenting a challenge when selecting the optimal approach for a specific problem. While substantial documentation is available in the literature providing details on the methodology and derivation of GSA methods, application-based case studies focus on fields such as finance, chemistry, and environmental science. To inform the selection and implementation of a GSA method for structural mechanics problems for a nonexpert user, this article investigates five of the most widespread GSA methods with commonly used structural mechanics methods and models of varying dimensionality and complexity. It is concluded that all methods can identify the most dominant parameters, although with significantly different computational costs and quantitative capabilities. Therefore, method selection is dependent on computational resources, information required from the GSA, and available data.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"274 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135560818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametrized polyconvex hyperelasticity with physics-augmented neural networks 物理增强神经网络的参数化多凸超弹性
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.21
Dominik K. Klein, Fabian J. Roth, Iman Valizadeh, Oliver Weeger
{"title":"Parametrized polyconvex hyperelasticity with physics-augmented neural networks","authors":"Dominik K. Klein, Fabian J. Roth, Iman Valizadeh, Oliver Weeger","doi":"10.1017/dce.2023.21","DOIUrl":"https://doi.org/10.1017/dce.2023.21","url":null,"abstract":"Abstract In the present work, neural networks are applied to formulate parametrized hyperelastic constitutive models. The models fulfill all common mechanical conditions of hyperelasticity by construction. In particular, partially input convex neural network (pICNN) architectures are applied based on feed-forward neural networks. Receiving two different sets of input arguments, pICNNs are convex in one of them, while for the other, they represent arbitrary relationships which are not necessarily convex. In this way, the model can fulfill convexity conditions stemming from mechanical considerations without being too restrictive on the functional relationship in additional parameters, which may not necessarily be convex. Two different models are introduced, where one can represent arbitrary functional relationships in the additional parameters, while the other is monotonic in the additional parameters. As a first proof of concept, the model is calibrated to data generated with two differently parametrized analytical potentials, whereby three different pICNN architectures are investigated. In all cases, the proposed model shows excellent performance.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network ensembles and uncertainty estimation for predictions of inelastic mechanical deformation using a finite element method-neural network approach 用有限元法-神经网络方法预测非弹性力学变形的神经网络集成和不确定性估计
Data-Centric Engineering Pub Date : 2023-01-01 DOI: 10.1017/dce.2023.17
Guy L. Bergel, David Montes de Oca Zapiain, Vicente Romero
{"title":"Neural network ensembles and uncertainty estimation for predictions of inelastic mechanical deformation using a finite element method-neural network approach","authors":"Guy L. Bergel, David Montes de Oca Zapiain, Vicente Romero","doi":"10.1017/dce.2023.17","DOIUrl":"https://doi.org/10.1017/dce.2023.17","url":null,"abstract":"Abstract The finite element method (FEM) is widely used to simulate a variety of physics phenomena. Approaches that integrate FEM with neural networks (NNs) are typically leveraged as an alternative to conducting expensive FEM simulations in order to reduce the computational cost without significantly sacrificing accuracy. However, these methods can produce biased predictions that deviate from those obtained with FEM, since these hybrid FEM-NN approaches rely on approximations trained using physically relevant quantities. In this work, an uncertainty estimation framework is introduced that leverages ensembles of Bayesian neural networks to produce diverse sets of predictions using a hybrid FEM-NN approach that approximates internal forces on a deforming solid body. The uncertainty estimator developed herein reliably infers upper bounds of bias/variance in the predictions for a wide range of interpolation and extrapolation cases using a three-element FEM-NN model of a bar undergoing plastic deformation. This proposed framework offers a powerful tool for assessing the reliability of physics-based surrogate models by establishing uncertainty estimates for predictions spanning a wide range of possible load cases.","PeriodicalId":158708,"journal":{"name":"Data-Centric Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135105416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信