{"title":"The antifungal activity of sulfonylated/carboxylated derivatives of dibenzo-1,4-dioxine-2-acetyloxime may be due to inhibition of lanosterol-14alpha-demethylase.","authors":"A Mastrolorenzo, A Scozzafava, C T Supuran","doi":"10.3109/14756360009040710","DOIUrl":"https://doi.org/10.3109/14756360009040710","url":null,"abstract":"<p><p>Aryl/alkyl-sulfonyl-, aryl/alkylcarboxyl- and aryl(sulfonyl)carbamyl/thiocarbamyl-derivatives of dibenzo-1,4-dioxine-2-acetyloxime were prepared by reaction of the title compound with sulfonyl halides, sulfonic acid anhydrides, acyl chlorides/carboxylic acids, arylsulfonyl isocyanates, aryl/acyl isocyanates or isothiocyanates. Several of the newly synthesized compounds showed effective in vitro antifungal activity against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole (with minimum inhibitory concentrations in the range of 1.2-4 microg/mL) against the two Aspergillus strains, but possessing a lower activity as compared to ketoconazole against C. albicans. Of the three investigated strains, best activity was detected against A. flavus. The mechanism of action of these compounds probably involves inhibition of ergosterol biosynthesis by interaction with lanosterol-14-alpha-demethylase (CYP51A1), since reduced amounts of ergosterol were found by means of HPLC, in cultures of the sensitive strain A. flavus treated with some of these inhibitors. Thus, the compounds reported here might possess a similar mechanism of action at molecular level with that of the widely used azole antifungals.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 6","pages":"557-69"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040710","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21962457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antifungal activity of Ag(I) and Zn(II) complexes of aminobenzolamide (5-sulfanilylamido-1,3,4-thiadiazole-2-sulfonamide) derivatives.","authors":"A Mastrolorenzo, A Scozzafava, C T Supuran","doi":"10.3109/14756360009040707","DOIUrl":"https://doi.org/10.3109/14756360009040707","url":null,"abstract":"<p><p>Aminobenzolamide (5-sulfanilylamido-1,3,4-thiadiazole-2-sulfonamide) is a potent inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), being at the same time structurally similar to the antimicrobial sulfonamides. Here we report that the reaction of aminobenzolamide with arylsulfonyl isocyanates affords a series of new arylsulfonylureido derivatives which were subsequently used as ligands (in the form of conjugate bases, as sulfonamide anions) for the preparation of metal complexes containing Ag(I) and Zn(II). All the new compounds proved to be very potent inhibitors of CA (isozymes I, II and IV). The newly synthesized complexes, unlike the free ligands, also act as effective antifungal agents against several Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 1.8-5 microg/mL. The mechanism of antifungal action of these complexes seem to be unconnected with inhibition of lanosterol-14-alpha-demethylase, since the levels of sterols assessed in the fungi cultures were equal in the absence or in the presence of the tested compounds. Probably the new complexes act as inhibitors of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 6","pages":"517-31"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21963214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of acid phosphatase isoforms purified from mature soybean (Glycine max) seeds.","authors":"C V Ferreira, E M Taga, H Aoyama","doi":"10.1080/14756360009040696","DOIUrl":"10.1080/14756360009040696","url":null,"abstract":"<p><p>The four soybean seed acid phosphatase isoforms AP1, AP2, AP3A and AP3B were competitively inhibited by phosphate, vanadate, fluoride and molybdate, using p-nitrophenylphosphate as substrate. The four isoforms were not significantly affected by compounds that can interact with SH residues or by pyridoxal phosphate. These results indicated that cysteine and lysine residues are not present in the active site of the four soybean seed acid phosphatase isoforms. The inhibition constant values for phosphate, vanadate, fluoride and molybdate at pH 5.0 were respectively: API (250, 12.8, 1.7, 0.05 microM). AP2 (800, 10, 500, 0.025 microM), AP3A (250, 24.2,250, 0.032 microM ), AP3B (2400 36.9, 750, 0.05 microM).</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 4","pages":"403-10"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14756360009040696","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21829024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C Fitzgerald, T A Swearengin, G Yeargans, D McWhorter, B Cucchetti, N W Seidler
{"title":"Non-enzymatic glycosylation (or glycation) and inhibition of the pig heart cytosolic aspartate aminotransferase by glyceraldehyde 3-phosphate.","authors":"C Fitzgerald, T A Swearengin, G Yeargans, D McWhorter, B Cucchetti, N W Seidler","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Glyceraldehyde 3-phosphate (Glyc3P), a glycolytic intermediate, non-enzymatically glycosylated (or glycated) and inhibited the pig heart cytoplasmic aspartate aminotransferase (cAAT). Glyc3P (5.0 mM) decreased cAAT activity by 47% after 1 min at 23 degrees C. cAAT activity remained unchanged after a 24h incubation with either glucose 6-phosphate (5.0 mM) or ribose 5-phosphate (5.0 mM). Increasing the incubation pH from 6.4 to 7.8 or the incubation temperature from 23 degrees C to 50 degrees C enhanced Glyc3P's inhibitory effect on cAAT activity. Glyc3P (250-500 microM) decreased the thermal stability of cAAT as evidenced by lowering the Tm or temperature that caused a 50% irreversible loss of cAAT activity (69 degrees C, control; 58.5 degrees C, 500 microM Glyc3P). Glyc3P decreased cAAT amino group content and increased glycation products, which were measured by adduct formation, fluorescence and protein crosslinking.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"79-89"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21694294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B W Clare, A Scozzafava, F Briganti, B Iorga, C T Supuran
{"title":"Protease inhibitors. Part 2. Weakly basic thrombin inhibitors incorporating sulfonyl-aminoguanidine moieties as S1 anchoring groups: synthesis and structure-activity correlations.","authors":"B W Clare, A Scozzafava, F Briganti, B Iorga, C T Supuran","doi":"10.3109/14756360009040686","DOIUrl":"https://doi.org/10.3109/14756360009040686","url":null,"abstract":"<p><p>Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with KI values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with KI values in the range 10-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly His, beta-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i.e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 3","pages":"235-64"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21657735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selective Inhibition of Monoamine Oxidase B by Aminoethyl Substituted Benzyl Ethers.","authors":"Woodroofe, Mostashari, Lu, Ramsay, Silverman","doi":"10.1080/14756369909030338","DOIUrl":"https://doi.org/10.1080/14756369909030338","url":null,"abstract":"Aminoethyl 3-chlorobenzyl ether was shown previously (Ding, C.Z. and Silverman, R.B. (1993). Bioorg. Med. Chem. Lett., 3, 2077-2078) to be a potent and selective time-dependent, but reversible inhibitor of monoamine oxidase B (MAO B). Based on this result, a series of novel aminoethyl substituted benzyl ethers was synthesized and the compounds were examined as potential inhibitors of both isozymic forms of MAO. Each compound in the series inhibits both MAO A and MAO B competitively, and IC(50) values for each compound were determined. In general, the B isozyme is much more sensitive to these inhibitors than the A isozyme (except for the o- and p-substituted nitro analogues), in some cases by more than two orders of magnitude. The selectivity in favor of MAO B inhibition is relatively high for all of the meta-substituted analogues and quite low for all of the ortho-substituted analogues. Having the substituent at the ortho-position is most favorable for MAO A inhibition. With MAO B the meta-analogues were, in general, more potent than the corresponding ortho- and para-analogues with respect to their reversible binding constants. The meta-iodo analogue is the most potent analogue.","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"57 1","pages":"11-21"},"PeriodicalIF":0.0,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86698088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbonic Anhydrase Inhibitors. Synthesis of Topically Effective Intraocular Pressure Lowering Agents Derived from 5-(omega-Amino- alkylcarboxamido)-1,3,4-Thia- diazole-2-Sulfonamide.","authors":"Barboiu, Supuran, Menabuoni, Scozzafava, Mincione, Briganti","doi":"10.1080/14756369909030339","DOIUrl":"https://doi.org/10.1080/14756369909030339","url":null,"abstract":"Reaction of the acyl chlorides of phthalimido-glycine or phthalimido-beta-alanine with 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded after hydrazinolysis and deprotection of the phthalimido group the corresponding 5-(omega-aminoalkylcarboxamido)-1,3,4-thiadiazole-2-sulfonamides. Reaction of 5-(beta-aminoethylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide with sulfonyl halides or acyl halides afforded a series of compounds possessing beta-alkyl/arylsulfonyl/carbonylamidoethylcarboxamido moieties in the 5 position of the thiadiazole-2-sulfonamide ring. The new derivatives were efficient inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form), but especially against CA II and CA IV (in nanomolar range), the two isozymes known to play an important role in aqueous humor secretion within the ciliary processes of the eye. Some of the synthesized inhibitors possessed good water solubility (as hydrochlorides or sodium salts) and were applied as 2% solutions directly into the eye of normotensive or glaucomatous albino rabbits. Very strong intraocular pressure (IOP) lowering was observed for many of them for prolonged periods of 1-2 h, and the active drug was detected in eye tissues and fluids indicating that the antiglaucoma effect is due to CA inhibition within the eye.","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"29 1","pages":"23-46"},"PeriodicalIF":0.0,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87803060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Mechanism of Action of Novel Thiocarbamate Inhibitors of Human Leukocyte Elastase.","authors":"Sky Li-Pan Z, Joshi, Digenis","doi":"10.1080/14756369909030341","DOIUrl":"https://doi.org/10.1080/14756369909030341","url":null,"abstract":"Several peptidyl thiocarbamate inhibitors of human leukocyte elastase were synthesized in the molecular weight range of 700-800. Two different sequences with lysine at the P(3) and ornithine at the P(4) positions were synthesized. Most of the inhibitors with large molecular weights showed high inhibitory capacity with Ki values as low as 10(-8) M. Compounds immobilized on poly,alpha,beta-[N-(2-hydroxyethyl)-d,l-aspartamide] (PHEA) polymers with an average molecular weight of 36,000 showed higher inhibitory capacity than their free forms.","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"14 1","pages":"63-77"},"PeriodicalIF":0.0,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81444730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Padiglia, R. Medda, A. Lorrai, B. Murgia, J. Z. Pedersen, A. Agrò, G. Floris
{"title":"Interaction of Pig Kidney and Lentil Seedling Copper-Containing Amine Oxidases with Guanidinium Compounds.","authors":"A. Padiglia, R. Medda, A. Lorrai, B. Murgia, J. Z. Pedersen, A. Agrò, G. Floris","doi":"10.1080/14756369909030343","DOIUrl":"https://doi.org/10.1080/14756369909030343","url":null,"abstract":"The effect of guanidinium compounds on the catalytic mechanism of pig kidney and lentil seedling amine oxidases has been investigated by polarographic techniques and spectroscopy. Guanidine does not inhibit the lentil enzyme and is a weak inhibitor for pig kidney amine oxidase (K(i) =1 mM), whereas aminoguanidine is an irreversible inhibitor of both enzymes, with a K(i) value of 10(-6) M. 1,4-Diguanidino butane (arcaine) is a competitive inhibitor for both pig and lentil amine oxidases. Amiloride is a competitive inhibitor for pig enzyme, but upon prolonged incubation with this drug the enzyme gradually loses its activity in an irreversible manner.","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"14 1","pages":"91-100"},"PeriodicalIF":0.0,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78935912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Kinetic Study on the Interaction between Tazobactam (A Penicillanic Acid Sulphone Derivative) and Active-Site Serine beta-Lactamases.","authors":"Perilli, Franceschini, Bonfiglio, Segatore, Stefani, Nicoletti, Tavio Perez Md, Bianchi, Zollo, Amicosante","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The interaction between tazobactam and several chromosome- and plasmid-encoded (TEM, SHV, PSE types) class A and C beta-lactamases was studied by spectrophotometry. Tazobactam behaved as a competitive inhibitor or inactivator able to restore in several cases the efficiency of piperacillin as a partner beta-lactam. A detailed kinetic analysis permitted measurement of the acylation efficiency for some cephalosporinases and broad-spectrum beta-lactamases; the presence of a turn-over of acyl-enzyme complex was also evaluated.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21777298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}