Journal of Environmental and Engineering Geophysics最新文献

筛选
英文 中文
3D Forward Modeling of Seepage Self-potential Using Finite-infinite Element Coupling Method 基于有限-无限单元耦合法的渗流自势三维正演模拟
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-09-01 DOI: 10.32389/jeeg19-038
Jing Xie, Yi-an Cui, Lijuan Zhang, Changying Ma, Bing-chu Yang, Xiaole Chen, Jianxin Liu
{"title":"3D Forward Modeling of Seepage Self-potential Using Finite-infinite Element Coupling Method","authors":"Jing Xie, Yi-an Cui, Lijuan Zhang, Changying Ma, Bing-chu Yang, Xiaole Chen, Jianxin Liu","doi":"10.32389/jeeg19-038","DOIUrl":"https://doi.org/10.32389/jeeg19-038","url":null,"abstract":"The streaming potential in porous media is one of the main constituents of the self-potential. It has attracted special attention in environmental and engineering geophysics. Forward modeling of streaming potentials could be the foundation of corresponding data inversion and interpretation, and improving the application effect of the self-potential method. The traditional finite element method has a large subdivision area and computational quantity, and the artificial boundary condition is not suitable for complex models. The Helmholtz-Smoluchowski equation is introduced for evaluating the streaming potential. Then three new shape functions of the multidirectional mapping infinite elements are proposed and the finite-infinite element coupling method is deduced for reducing the subdivision scale and improving both the calculation efficiency and accuracy. The correctness and validity of the new coupled method are verified by a resistive model in homogeneous half-space. Besides, a seepage model with complex terrain and a landfill model with dynamic leakages are modeled using the improved coupled method. The results show that the accuracy of the improved coupled method is superior to the unimproved coupled method, and is better than the finite element method. Also, the coupled method has better adaptability to complex models and is suitable for the accurate simulation of dynamic multi-source seepage models.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"11 1","pages":"381-390"},"PeriodicalIF":1.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87239026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Analysis of Magnetic Anomaly Characteristics of Underground Non-Coplanar Cross-buried Iron Pipelines 地下非共面交埋铁管道磁异常特征分析
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-092
Pan Wu, Minghui Wei
{"title":"Analysis of Magnetic Anomaly Characteristics of Underground Non-Coplanar Cross-buried Iron Pipelines","authors":"Pan Wu, Minghui Wei","doi":"10.2113/JEEG19-092","DOIUrl":"https://doi.org/10.2113/JEEG19-092","url":null,"abstract":"The non-coplanar cross-buried pipelines are a common way of pipeline wiring. In order to investigate the magnetic anomaly characteristics of the non-coplanar cross-buried pipelines and guide the site operation, the influences of a series of factors on the magnetic anomaly of the non-coplanar cross-buried pipelines are analyzed. Based on the principle of magnetic dipole construction, a forward model is established for the magnetic anomaly characteristics of the subsurface non-coplanar cross-buried pipelines. The basic characteristics of magnetic anomaly for the non-coplanar cross-buried pipelines are defined. The influences of geomagnetic parameters (geomagnetic intensity, geomagnetic inclination, and geomagnetic declination), pipeline parameters (thickness, magnetic susceptibility), and cross angle of pipelines on the characteristics of magnetic anomalies are analyzed. The results show that the shape of the total magnetic anomaly is mainly affected by the magnetic inclination, and the curve of magnetic anomaly at ± I site shows some symmetry. The amplitude is approximately linearly affected by the total geomagnetic field, magnetic declination, pipeline thickness, material magnetic susceptibility, and pipeline cross angle. There is a periodic change of the amplitude with the increase of geomagnetic inclination (−90°–>90°). The crest-trough distance is mainly affected by geomagnetic inclination, magnetic declination, thickness, magnetic susceptibility, and pipeline cross angle. A more accurate measurement can be achieved if the direction of the pipelines is roughly measured and then the number of measurement points is augmented near the intersection of pipelines and the measurement lines. Present work obtains the equivalent magnetic dipole units by segmenting pipelines. The magnetic anomaly characteristics of non-coplanar crossed iron pipelines are successfully simulated. The numerical results are in accordance with the experimental analysis.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"1 1","pages":"223-233"},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78542992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Imaging the Geology Ahead of a Tunnel Using Seismics and Adaptive Polarization Analysis 利用地震和自适应极化分析成像隧道前方地质
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-063
Lei Chen, Chao Fu, Xinji Xu, L. Nie
{"title":"Imaging the Geology Ahead of a Tunnel Using Seismics and Adaptive Polarization Analysis","authors":"Lei Chen, Chao Fu, Xinji Xu, L. Nie","doi":"10.2113/JEEG19-063","DOIUrl":"https://doi.org/10.2113/JEEG19-063","url":null,"abstract":"The seismic method is one of the main geophysical methods that are widely used to image the geology ahead of tunnels during tunnel construction. However, owing to the complex environment and limited observation aperture in a tunnel, symmetric false results (that appear in imaging results but not in the actual environment) frequently occur in imaging results. In a symmetric false reflection, false and true reflection points are axisymmetric around the tunnel axis. Such false results frequently cause errors in the interpretation of the geological conditions ahead of a tunnel face. To overcome this problem, a seismic method that uses adaptive polarization analysis was adopted to better image geological conditions. Based on an adaptive time window, the polarization characteristics of seismic signals were analyzed to calculate the main polarization direction. The symmetric false results in imaging results were suppressed by adopting a weighting coefficient based on the angle between the main polarization direction and ray direction. Numerical simulations revealed the superiority of the method when applied to synthetic data processing. Moreover, the method was applied to a diversion tunnel. The method successfully identified the fracture zones ahead of the tunnel face, thus significantly enhancing the safety of tunnel construction.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"66 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76674680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Permafrost Mapping with Electrical Resistivity Tomography: A Case Study in Two Wetland Systems in Interior Alaska 用电阻率层析成像绘制永久冻土:阿拉斯加内陆两个湿地系统的案例研究
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-091
C. Conaway, Cordell D. Johnson, T. Lorenson, M. Turetsky, E. Euskirchen, M. Waldrop, P. Swarzenski
{"title":"Permafrost Mapping with Electrical Resistivity Tomography: A Case Study in Two Wetland Systems in Interior Alaska","authors":"C. Conaway, Cordell D. Johnson, T. Lorenson, M. Turetsky, E. Euskirchen, M. Waldrop, P. Swarzenski","doi":"10.2113/JEEG19-091","DOIUrl":"https://doi.org/10.2113/JEEG19-091","url":null,"abstract":"Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"42 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80881572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Wave Field Characteristics of Small Faults around the Loose Circle of Rock Surrounding a Coal Roadway 煤巷围岩松动圈周边小断层波场特征
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-073
Bo Wang, Huachao Sun, Huang Lanying, Sheng-dong Liu, Biao Jin, Heng Zhang, Zhang Zhendong, Xin Ding, Qiu Wanyong, Shengcheng Wang
{"title":"Wave Field Characteristics of Small Faults around the Loose Circle of Rock Surrounding a Coal Roadway","authors":"Bo Wang, Huachao Sun, Huang Lanying, Sheng-dong Liu, Biao Jin, Heng Zhang, Zhang Zhendong, Xin Ding, Qiu Wanyong, Shengcheng Wang","doi":"10.2113/JEEG19-073","DOIUrl":"https://doi.org/10.2113/JEEG19-073","url":null,"abstract":"The geological conditions of coal roadway excavation are complicated. Seismic advanced detection is strongly influenced by the loose circle of fractured rock surrounding the competent coal seam. However, the three-dimensional wave field characteristics of small fault advanced detection in the condition of the loose circle of coal roadway have not examined. In this paper, numerical modeling and field tests were conducted to address this knowledge gap. The results indicate that when a seismic source near the tunnel face is excited, the body waves and a Love channel wave propagate in the tunneling direction toward the small fault, then produces reflected body waves whose amplitude is relatively weak, and a reflected Love channel wave whose amplitude is relatively strong. When reflected body waves and the reflected Love channel wave enter the loose circle of surrounding rock, the former's signal is unrecognizable in seismic record; but the latter converts to a Love wave whose amplitude is strong in the loose circle of coal seam. The Love wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record, which makes it suitable for advanced detection of small fault. The signal-to-noise ratio of seismic record of X component is higher than those of Y component and Z component.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"50 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84737253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ground Penetrating Radar for Water Content and Compaction Evaluation: A Laboratory Test on Construction Material 用探地雷达评价建筑材料的含水量和压实度
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-035
H. R. Roodposhti, M. Hafizi, M. Kermani
{"title":"Ground Penetrating Radar for Water Content and Compaction Evaluation: A Laboratory Test on Construction Material","authors":"H. R. Roodposhti, M. Hafizi, M. Kermani","doi":"10.2113/JEEG19-035","DOIUrl":"https://doi.org/10.2113/JEEG19-035","url":null,"abstract":"With the aid of ground penetrating radar (GPR), it is possible to evaluate physical properties of a constructed base layer in engineered structures (pavement, land consolidation projects, etc.) non-destructively, quickly, and accurately. High spatial variations of subsurface water content and deficient compaction can lead to unexpected damage and structural instability. In this research, we established a relationship between the dielectric constant, water content, and compaction, whereby, an interactive relationship between these parameters is presented. To achieve this, large-scale laboratory experiments were carried out on construction materials to simulate field conditions. According to USCS, the tested soil type was GW-GM (type E base layer according to Iran's highway specifications code). Furthermore, water content and compaction were changed between 4% -12.9% and 84.7% -94.9%, respectively. The travel-times in each test, including three profiles with more than 210 traces, are measured automatically. Additionally, the calculated dielectric constants were compared with the Topp and Roth equations. R-square and RMS error of the final interactive equation between dielectric constant and water content-compaction were 0.95 and 0.41, respectively. Moreover, the sensitivity analysis of the proposed interactive equation shows that changes in water content of soil have greater impact on dielectric constant than soil compaction changes. The data also indicate the importance of considering the compaction changes of soil to reduce the error in dielectric constant estimation.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"15 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75298041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Full Waveform Inversions of Borehole Transient Electromagnetic Virtual Wave Fields and Potential Applications 井眼瞬变电磁虚波场全波形反演及其潜在应用
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-065
Fan Tao, Qin Zhipeng, Yan Bin, Zhao Zhao, Wang Bingchun, Shi Xianxin, Liu Lei, Zhao Rui, Wang Ji-kuang, Li Bofan, Fang Zhe
{"title":"Full Waveform Inversions of Borehole Transient Electromagnetic Virtual Wave Fields and Potential Applications","authors":"Fan Tao, Qin Zhipeng, Yan Bin, Zhao Zhao, Wang Bingchun, Shi Xianxin, Liu Lei, Zhao Rui, Wang Ji-kuang, Li Bofan, Fang Zhe","doi":"10.2113/JEEG19-065","DOIUrl":"https://doi.org/10.2113/JEEG19-065","url":null,"abstract":"The transient electromagnetic method (TEM) for boreholes uses fixed source loops to launch at excavation faces, and is able to realize the mobile reception of secondary fields in the boreholes and detections of low-resistance hazards. This method is known as high detection accuracy, due to the fact that the receiving points are close to the anomalies. However, the interpretation method for this device has not yet been perfected. The present study's goal was to realize the interpretations of boreholes TEM based on inverse transform algorithms of the TEM wave-fields and full waveform inversions. It was found that under the conditions of transient electromagnetic virtual wave-fields, the characteristics of the virtual wave-field time-distance curves of the two-dimensional device could be examined, and a corresponding dynamic correction algorithm was successfully obtained. The wave-field velocities were analyzed using an equivalent conductive plane method. Additionally, the pseudo-seismic inversions of the tunnel-borehole TEM data were realized using full waveform inversion technology. Then, the inversion results of the three-dimensional numerical simulations, flume physical simulations, and downhole field simulations were calculated. It was observed that good imaging results had been obtained for small-scale borehole radial anomalies. Finally, the proposed method was applied to the engineering practices in an underground coal mine in Shanxi Province. The practicability and effectiveness of the proposed method in the fine detection of the properties, forms, and scale of water-logged goaf roadways were successfully tested in the field. The research results indicated that the roadway-borehole transient electromagnetic detection method was complementary to the underground geophysical exploration and drilling, and could be effectively applied in the detection of water-logged goaf roadways.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"21 1","pages":"211-222"},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73739063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geophysical Exploration of a Historical Stamp Mill Dump for the Volume Estimation of Valuable Residues 历史碾压机堆的物探及有价残量估算
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-080
T. Martin, Kerstin Kuhn, T. Günther, R. Kniess
{"title":"Geophysical Exploration of a Historical Stamp Mill Dump for the Volume Estimation of Valuable Residues","authors":"T. Martin, Kerstin Kuhn, T. Günther, R. Kniess","doi":"10.2113/JEEG19-080","DOIUrl":"https://doi.org/10.2113/JEEG19-080","url":null,"abstract":"We present an approach for the estimation of ore processing residue volumes in historical mine waste dumps by the use of different geophysical methods in combination with mineralogical investigations. The stamp mill dump in the Harz mountains, Germany was examined with the methods electrical resistivity tomography (ERT), ground penetrating radar (GPR) and spectral induced polarization (SIP) flanked by mineralogical studies at many drilling points. The mineralogical results were used to calibrate the geophysical results and to distinguish between valuable and non-valuable waste material.With SIP we investigated individual profiles and took lab samples. These lab results emphasize the differences between the fine-grained tailings of clayey silt to silty sand in the top layer and the sandy tailings underneath in both resistivity and phase. From the GPR results we can distinguish between different layers and various backfillings in the first two meters due to the much higher resolution than the other methods. From ERT we achieved an overview about the dimension and inner structure of the dump and the boundary between the sandy residual material and the host rock. To estimate the volume of the residual body we carried out 2D inversion of all ERT profiles followed interpolation between the inverted profiles. From the drilling interpretation, the SIP lab results and the ERT field measurements we defined a resistivity threshold of 350 ohm-m for the ore processing residues to achieve a 3-dimensional body of the dump. The volume of this body was then corrected by a factor due to consideration of uncertainties, e.g., forest areas, inaccessible dump sections, small-scale anomalies (geological or different anthropogenic nature) and inversion coverage. As a result, we were able to calculate the volume of the ore processing residues which can be used further for the determination of the economic potential (remaining metal content). (Less)","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"17 1","pages":"275-286"},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81923339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Field Investigation on the Effects of Base Plate Material on Experimental Surface Wave Data with MASW 基片材料对MASW实验表面波数据影响的实地考察
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG18-056
Siavash Mahvelati, J. Coe, Philip Asabere
{"title":"Field Investigation on the Effects of Base Plate Material on Experimental Surface Wave Data with MASW","authors":"Siavash Mahvelati, J. Coe, Philip Asabere","doi":"10.2113/JEEG18-056","DOIUrl":"https://doi.org/10.2113/JEEG18-056","url":null,"abstract":"Source characteristics significantly affect the signals generated during seismic testing. Proper source selection plays a major role in data quality and can potentially improve investigation outcomes. This is particularly true for surface wave testing where the goal is to establish the frequency variation of phase velocity. Little research has compared the input energy caused by different base plates when impact sources are used. Consequently, data were collected using the Multichannel Analysis of Surface Waves (MASW) method with three base plate configurations (aluminum, aluminum over a rubber mat, and polyethylene) and two different sledgehammers. The variations in signal frequency content and amplitude spectra, energy, and dispersion images were systematically analyzed. There were appreciable differences in the energy introduced by different base plate configurations. Both the aluminum/rubber and the polyethylene base plates led to power spectra increases relative to the aluminum base plate. Subsequently, the aluminum/rubber and polyethylene base plates typically transferred more energy into the subsurface. This was not necessarily the case when the base plates were used on soft surficial soils. The variations in predominant frequency content were also less substantial, though the aluminum/rubber and polyethylene base plates developed slightly lower-frequency content at the expense of higher-frequency components in the dispersion curves. Despite the noticeable differences in energy transfer and frequency content, the base plate materials did not appreciable alter interpretation of the dispersion behavior at the sites given the uncertainty present in the dispersion images. This highlights that the selection of MASW base plate materials can be correspondingly driven by practical considerations such as noise, portability, and durability. Consequently, base plate materials with viscoelastic characteristics are a promising alternative to conventional metallic plates for coupling impact sources in surface wave testing, though care should be exercised when employing them at sites with soft ground conditions.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"41 1","pages":"255-274"},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73522701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ü-Net: Deep-Learning Schemes for Ground Penetrating Radar Data Inversion Ü-Net:探地雷达数据反演的深度学习方案
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI: 10.2113/JEEG19-074
Xie Longhao, Qing-Nan Zhao, Chunguang Ma, Binbin Liao, J. Huo
{"title":"Ü-Net: Deep-Learning Schemes for Ground Penetrating Radar Data Inversion","authors":"Xie Longhao, Qing-Nan Zhao, Chunguang Ma, Binbin Liao, J. Huo","doi":"10.2113/JEEG19-074","DOIUrl":"https://doi.org/10.2113/JEEG19-074","url":null,"abstract":"Electromagnetic (EM) inversion is a quantitative imaging technique that can describe the dielectric constant distribution of a target based on the EM signals scattered from it. In this paper, a novel deep neural network (DNN) based methodology for ground penetrating radar (GPR) data inversion, known as the Ü-net is introduced. The proposed Ü-net consists of three parts: a data compression unit, U-net, and an output unit. The novel inversion approach, based on supervised learning, uses a neural network to generate the dielectric constant distribution from GPR data. The GPR data can be compressed and reshaped the size using data compression unit. The U-net maps the object features to the dielectric constant distribution. The output unit meshes the dielectric constant distribution more finely. A novel feature of the proposed methodology is the application of instance normalization (IN) to the DNN EM inversion method and a comparison of its performance to batch normalization (BN). The validity of this technique is confirmed by numerical simulations. The Mean-Square Error of the test data sets is 0.087. These simulations prove that the instance normalization is suitable for GPR data inversion. The proposed approach is promising for achieving quality dielectric constant images in real-time.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"44 1","pages":"287-292"},"PeriodicalIF":1.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78755758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信